News | Artificial Intelligence | November 30, 2019

Fujifilm Showcases Artificial Intelligence Initiative And Advances at RSNA 2019

REiLI AI platform auto segmentation.

December 1, 2019 — Fujifilm Medical Systems U.S.A. is showcasing REiLI, the company's global medical imaging and informatics artificial intelligence (AI) technology initiative at the 2019 Radiological Society of North America's (RSNA) annual meeting.

"At RSNA 2019, we look forward to sharing the AI insights and advances we've made by working closely with clinical and research partners for several years," said Takuya Shimomura, chief technology officer and executive director, Fujifilm. "Ultimately, the long-term goal of our AI initiative is to help providers make better decisions that improve patient lives."

Under the REiLI brand, Fujifilm is developing AI technologies that strongly support diagnostic imaging workflow, leveraging the combination of its deep learning innovations and distinct image processing heritage. Applications currently in development include, but are not limited to: Region Recognition, an AI technology that helps to accurately recognize and consistently extract organ regions, regardless of deviations in shape, presence or absence of disease, and imaging conditions; Computer Aided Detection, an AI technology to reduce the time of image interpretation and support radiologists' clinical decision making; Workflow Support, using AI technology to realize optimal study prioritization, alert communications of AI findings, and report population automation. 

"Our latest Synapse 7x brings diagnostic radiology, mammography and cardiology together on the server-side, enabling immediate interaction with these modality imaging data sets through a single AI-enabled platform," said Bill Lacy, vice president, medical informatics, Fujifilm. "We're excited to debut this solution for our U.S. customers at RSNA 2019, showing our commitment to progressing AI technology to empower physicians to make more efficient and impactful care decisions."

RSNA attendees are encouraged to learn more about REiLI at Booth #4111 and participate in the following Fujifilm-hosted activities.

At booth #4111, attendees can visit Fujifilm's AI Lab. The lab will feature dedicated workstations demonstrating REiLI use cases within Synapse PACS. Attendees can witness first-hand the speed and depth of the integrated workflows achieved by unifying Fujifilm's REiLI technology with the company's server-side PACS system.  Featured in the AI lab will be Fujifilm developed algorithms, to include CT lung nodule, intracerebral hemorrhage, cerebral infarction MR and CT, spine label and bone temporal subtraction to name a few. In addition to the Fujifilm AI development, the AI lab will showcase its strengths by supporting a multitude of integration points in support of partner vendor and provider developed algorithms. This will include Riverain's lung nodule, MaxQ's stroke, Lunit's Chest and 2-D Mammography, LPixel's MR Aneurysm, Koios' US breast, Aidoc's pulmonary embolism and Gleamer's bone fracture.

For more inform rsna.fujimed.com
 

Related Content

Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
Largest case series (n=30) to date yields high frequency (77%) of negative chest CT findings among pediatric patients (10 months-18 years) with COVID-19, while also suggesting common findings in subset of children with positive CT findings

A and B, Unenhanced chest CT scans show minimal GGOs (right lower and left upper lobes) (arrows) and no consolidation. Only two lobes were affected, and CT findings were assigned CT severity score of 2. Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 29, 2020
May 29, 2020 — An investigation published open-access in the ...
The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control.

The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control. Getty Images

Feature | Coronavirus (COVID-19) | May 28, 2020 | By Matthew A. Michela
One year after being proposed, federal rules to advance interoperability in healthcare and create easier access for p
The opportunity to converge the silos of data into a cross-functional analysis can provide immense value during the COVID-19 outbreak and in the future

Getty Images

Feature | Coronavirus (COVID-19) | May 28, 2020 | By Jeff Vachon
In the midst of the coronavirus pandemic normal
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
In April, the U.S. Food and Drug Administration (FDA) cleared Intelerad’s InteleConnect EV solution for diagnostic image review on a range of mobile devices.
Feature | PACS | May 27, 2020 | By Melinda Taschetta-Millane
Fast, easily accessible patient images are crucial in this day and age, as imaging and medical records take on a new
There were several new developments in digital radiography (DR) technology at the 2019 Radiological Society of North America (RSNA) annual meeting. These trends included integration of artificial intelligence (AI) auto detection technologies, more durable glassless detector plates, and technologies to pull more diagnostic data out of X-ray imaging. Some vendors also have redesigned their DR systems to make them more user-friendly and ergonomic. 
Feature | Digital Radiography (DR) | May 26, 2020 | By Dave Fornell
There were several new developments in digital rad...