News | Artificial Intelligence | May 06, 2021

Forbes AI 50 Selects Nines as one of the Most Promising AI Companies

Nines owns Nines Radiology, a leading radiology practice group utilizing artificial intelligence to improve report delivery

Nines owns Nines Radiology, a leading radiology practice group utilizing artificial intelligence to improve report delivery

May 6, 2021 — Forbes recently announced that Nines, Inc. has been selected one of 50 most promising private AI companies in the US and Canada. The Forbes AI 50 highlights companies that are using artificial intelligence (AI) in meaningful ways and demonstrating business potential.

“Being included in this list of ‘Most Promising AI Companies’ is a true honor,” said David Stavens, CEO of Nines, Inc. “To achieve this selection is a validation of our unique approach to deliver quality, reliable care to patients in hospitals, imaging centers and radiology practices.”

According to Forbes, the magazine received nearly 400 submissions from the US and Canada. Out of the 400, the finalists were whittled down to 100 companies. The judges, leading experts in AI, then selected the 50 most compelling companies. Nines is the only teleradiology practice included in the list.

The Forbes AI list features 31 companies appearing for the first time. At least 13 are valued at $100 million or less, while 13 are valued at $1 billion or more. Silicon Valley remains the hub for the AI startups, with 37 of the 50 honorees come from the San Francisco Bay area.

For more information: www.nines.com

Related Content

Researchers have developed an artificial intelligence (AI)-based brain age prediction model to quantify deviations from a healthy brain-aging trajectory in patients with mild cognitive impairment, according to a study published in Radiology: Artificial Intelligence. The model has the potential to aid in early detection of cognitive impairment at an individual level.

Flowchart showing the framework of the brain age prediction model. A, The imaging data were split into training and test datasets. The training dataset consisted of structural magnetic resonance imaging data from 974 healthy individuals, whereas the test dataset included data from 2 groups, 231 healthy controls and 224 aMCI subjects. B, A Conventional Statistical Parametric Mapping structural preprocessing pipeline was used to generate GMV maps in the MNI space. C, The intensity values from the GMV maps were extracted and concatenated to create a feature matrix that was then cleaned and normalized. D, The best elastic net model was obtained by performing supervised learning on the training dataset. To optimize the hyperparameters, a grid search was performed. E, The test dataset was input into the trained model. An age was predicted for every participant included in the test dataset. The PAD scores were calculated by subtracting the participant's chronological age from his or her predicted age. aMCI = amnestic mild cognitive impairment, GMV = gray matter volume, MNI = Montreal Neurologic Institute, Dartel = Diffeomorphic Anatomic Registrations Through Exponentiated Lie Algebra, PAD = predicted age difference. Chart courtesy of Radiological Society of North America

News | Artificial Intelligence | June 23, 2021
June 23, 2021 — Researchers have developed an...
An example of a COVID-19 pneumonia of a chest CT scan. The COVID appears as white ground glass opacities (GGOs) in the lungs. Normal lungs on CT should appear black.

An example of a COVID-19 pneumonia of a chest CT scan. The COVID appears as white ground glass opacities (GGOs) in the lungs. Normal lungs on CT should appear black.

News | Coronavirus (COVID-19) | June 23, 2021
June 23, 2021 — The Radiological Society of North America (...
Led by a Michigan Medicine physician, the research team examined treatment outcomes over two years for patients who fractured their distal radius, the larger of two bones in the forearm. They found no one-size-fits all method for treating the fracture, which more than 85,000 Medicare beneficiaries sustain annually.

Getty Images

News | Radiology Imaging | June 23, 2021
June 23, 2021 — A decade-long...
According to a new study, by the Harvey L. Neiman Health Policy Institute and the American College of Radiology’s National Mammography Database Committee, the most influential radiologist characteristics impacting mammography interpretive performance were geography, breast sub-specialization, performance of diagnostic mammography, and performance of diagnostic ultrasound.

Getty Images

News | Breast Imaging | June 23, 2021
June 23, 2021 — According to a new ...
A phase III clinical trial has validated the effectiveness of the prostate-specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL in detecting and localizing recurrent prostate cancer.

Figure 1. Case example: A 54-year-old man with a history of RP+LND and a subsequent PSA of 1.25 ng/mL had no evidence of disease by baseline imaging. Piflufolastat F 18 (18F-DCFPyL)- PET/CT accurately detected biochemically recurrent prostate cancer with the PSMA PET/CT scan identifying positive left (left panel) and right peri-rectal lymph nodes (right panel).

News | Prostate Cancer | June 21, 2021
June 21, 2021 — A phase III clinica...
The impact of deploying artificial intelligence (AI) for radiation cancer therapy in a real-world clinical setting has been tested by Princess Margaret researchers in a unique study involving physicians and their patients.

Getty Images

News | Artificial Intelligence | June 15, 2021
June 15, 2021 — The impact of deploying ...
A cardiac MRI of athletes who had COVID-19 is seven times more effective in detecting inflammation of the heart than symptom-based testing, according to a study led by researchers at The Ohio State University Wexner Medical Center and College of Medicine with 12 other Big Ten programs.

Cardiac Magnetic Resonance Imaging in Athletes With Clinical and Subclinical Myocarditis A-D, Athlete A with subclinical possible myocarditis was asymptomatic with normal electrocardiogram (ECG), echocardiogram, and high-sensitivity troponin findings. A, T2 mapping showing elevated T2 in basal-mid inferolateral wall in short axis view. B, late gadolinium enhancement (LGE) in the basal inferolateral wall in short axis view. C, Postcontrast steady state-free precession (SSFP) images showing contrast uptake in the basal-mid inferolateral wall in short axis view. D, LGE in the inferolateral wall in 3-chamber view. E-H, Athlete B with subclinical probable myocarditis was asymptomatic with normal ECG, normal echocardiogram, and elevated high-sensitivity troponin findings. E, T2 mapping showing elevated T2 in the anteroseptal wall in short axis view. F, LGE in the anteroseptal wall in 3-chamber view. G, T2 mapping showing elevated T2 in the anteroseptal wall in 3-chamber view. F, Postcontrast SSFP image showing pericardial effusion in short axis view. I-K, Athlete C with clinical myocarditis and chest pain, dyspnea, abnormal ECG, normal echocardiogram, and normal troponin findings. I, T2 mapping showing elevated T2 in the lateral wall short axis view. J, Postcontrast SSFP images showing contrast uptake in midlateral wall in short axis view. K, LGE in the epicardial midlateral wall in short axis view. L-N, Athlete D with clinical myocarditis, chest pain, abnormal ECG, echocardiogram, and troponin findings. L, T1 mapping showing elevated native T1 in midlateral wall in short axis view. M, T2 mapping showing elevated T2 in the midlateral wall in short axis view. N, LGE in the epicardial midlateral wall in short axis view. IR indicates inferior right view; IRP, inferior, right, posterior view; PLI, posterior, left, inferior view; SL, superior left view; SLA, superior, left, anterior view. Image courtesy of JAMA Cardiol. Published online May 27, 2021. doi:10.1001/jamacardio.2021.2065

News | Cardiac Imaging | June 15, 2021
June 15, 2021 — A...
Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT
News | Computed Tomography (CT) | June 14, 2021
June 14, 2021 — Heart disease and cancer are the ...