News | June 09, 2015

Florbetaben Proves Effective for Beta-amyloid Plaque Detection in Suspected Alzheimer’s Patients

Analyses presented at SNMMI suggest plaque improves uptake of PET agent

florbetaben, beta-amyloid plaque, Alzheimer's, Piramal, PET

June 9, 2015 - Piramal Imaging announced the presentation of additional analyses from its florbetaben phase 3 histopathology study, in which the florbetaben positron emission tomography (PET) signal from binding to morphologically distinct beta-amyloid plaques was examined. The analyses also examined the potential influence of plaques in the reference region for quantification. The results, which were presented at the 2015 annual meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) in Baltimore, provide additional details on the topographic distribution of different beta-amyloid aggregates in the brain and on quantification.

In one analysis, entitled, Impact of Morphologically Distinct Beta-amyloid Deposits on 18F-Florbetaben (FBB) PET Scans, investigators examined florbetaben PET data to investigate the impact of diffuse, neuritic and vascular beta-amyloid deposits on different regions of interest in the brain. They collected brain tissue samples from 87 end-of-life patients (including 64 with Alzheimer's disease [AD], 14 with other dementia, and 9 non-demented aged volunteers; mean age 80.4±10.2 years) who underwent a florbetaben PET scan before death. In the frontal and posterior cingulate cortices - brain regions with high frequency of deposits - both diffuse and neuritic beta-amyloid contributed significantly to 18F-florbetaben uptake. In the occipital and anterior cingulate cortices - brain regions with low deposit frequency - only diffuse beta-amyloid plaques contributed significantly to the uptake. The presence of vascular beta-amyloid deposits contributed significantly to the uptake only in the occipital cortex.

"PET imaging using 18F-florbetaben as a radiotracer may allow for detection of morphologically distinct beta amyloid deposits in the brain aside from neuritic plaques, and their distribution in different brain regions. Further clinical studies are needed to elucidate how these deposits influence and contribute to cognitive impairment and dementia," commented co-author Ana M. Catafau, M.D., Ph.D., vice president of clinical R&D neurosciences at Piramal Imaging. "Findings such as these may provide the requisite detailed information to help researchers better understand the time course and contributions of different types of plaque to the pathogenesis of Alzheimer's disease and other types of cognitive impairment."

In a second analysis, Cerebellar Senile Plaques: How Frequent are They and Do They Influence 18F-florbetaben SUVR?, researchers assessed the influence of cerebellar plaques on signal quantification when the cerebellar cortex is used as a reference region for quantification. Cerebellar beta-amyloid plaques may be present in late-stage AD, and it was previously unknown if these would influence quantification.

Researchers conducted a neuropathological assessment of cerebral (frontal, occipital, anterior and posterior cingulate) cortex and cerebellar cortex tissue from the 87 end-of-life patients who underwent a florbetaben PET scan before death. Presence of neuritic/cored and diffuse plaques was assessed as absent, sparse, moderate and frequent. Mean cortical standardized uptake value ratios (SUVRs) were compared among brains with different cerebellar plaque loads. Results showed the presence of senile plaques in the cerebellum is very infrequent. The cerebellum most frequently shows sparse diffuse plaques, which correspond to brains with higher cerebral cortical beta-amyloid loads. However, the presence of cerebellar senile plaques did not influence the SUVRs in subjects with presence of cerebral cortical beta-amyloid. Therefore, the data suggest the effect of cerebellar senile plaques in 18F-florbetaben SUVR is negligible, even in advanced stages of AD in patients with high cerebral cortical beta-amyloid load.

For more information: www.piramal.com/imaging

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
Rapid Cardiac MRI Technique May Cut Costs, Boost Care in Developing World
News | Magnetic Resonance Imaging (MRI) | August 29, 2018
A newly developed rapid imaging protocol quickly and cheaply diagnosed heart ailments in patients in Peru, according to...
iSchemaView RAPID Technology Now Installed in More Than 500 Stroke Centers
News | Neuro Imaging | August 27, 2018
iSchemaView announced that more than 575 stroke centers in 22 countries have selected the RAPID advanced imaging...
Brain Study of 62,454 Scans Identifies Drives of Brain Aging
News | SPECT Imaging | August 27, 2018
In the largest known brain imaging study, scientists from five institutions evaluated 62,454 brain single photon...