A recently developed data science pathway for fourth-year radiology residents will help prepare the next generation of radiologists to lead the way into the era of artificial intelligence (AI) and machine learning (AI-ML), according to a special report published in Radiology: Artificial Intelligence.

Getty Images


November 4, 2020 — A recently developed data science pathway for fourth-year radiology residents will help prepare the next generation of radiologists to lead the way into the era of artificial intelligence (AI) and machine learning (AI-ML), according to a special report published in Radiology: Artificial Intelligence.

AI-ML has the potential to transform medicine by delivering better and more efficient healthcare. Applications in radiology are already arriving at a staggering rate. Yet organized AI-ML curricula are limited to a few institutions and formal training opportunities are lacking.

Three senior radiology residents at Brigham and Women’s Hospital (BWH) in Boston recently helped devise a data science pathway to provide a well-rounded introductory experience in AI-ML for fourth-year residents. The pathway combines formal instruction with practical problem-solving in collaboration with data scientists.

“Across the nation there are a number of radiology residency programs that are trying to figure out how to integrate AI into their training,” said the paper’s co-lead author Walter F. Wiggins, M.D., Ph.D. “We thought that perhaps our experience would help other programs figure out ways to integrate this type of training into either their elective pathways or their more general residency curriculum.”

The pathway provides an immersion into AI-ML through a flexible schedule of educational, experiential and research activities at the Massachusetts General Hospital (MGH) & BWH Center for Clinical Data Science (CCDS). Dr. Wiggins and his resident colleagues, M. Travis Caton, M.D., and Kirti Magudia, M.D., Ph.D., were exposed to all aspects of AI-ML application development, including data curation, model design, quality control and clinical testing. The residents contributed to model and tool development at multiple stages, and their work during the pilot period led to 12 accepted abstracts for presentation at national meetings. Feedback from the pilot project resulted in the establishment of a formal AI-ML curriculum for future residents.

“Radiologists have always had to manage, analyze and process data in order to be able to do their work,” Wiggins said. “We already have the underlying skill sets and infrastructure that we can tap into to allow residents with an interest in AI and ML to really develop and become leaders in applying these skills clinically.”

The pathway provided ample opportunities for the residents to work directly with data scientists to better understand how they approach image analysis problems with ML tools. This communication, in turn, helped the data scientists better understand how radiologists approach a radiology problem in a clinical setting. The data scientists could be easily implemented in clinical practice.

“An important component of a curriculum like this is to learn the language the data scientists speak and teach them a little bit about the language that we as radiologists speak so that we can have better, more effective collaborations,” Wiggins said. “Going through that process over several different projects was where I think I gained the best experience throughout all of this.”

Wiggins credited Katherine Andriole, Ph.D., director of Research Strategy and Operations at the CCDS, and Michael H. Rosenthal, M.D., Ph.D., for their guidance and feedback as mentors of the project.

Earlier this year, Wiggins accepted a position as clinical director of AI at Duke Radiology in Durham, North Carolina, where he hopes to utilize some of the lessons he learned from the pathway development process.

“I also hope that people from other institutions might read this manuscript and find something useful for integrating into their residency curricula or for developing specialized pathways for informatics and/or data science,” he said.

For more information: www.rsna.org

Related Content

News | Ultrasound Imaging

May 24, 2022 — Mindray, a global leader and developer of healthcare technologies and solutions for ultrasound, patient ...

Time May 24, 2022
arrow
News | Coronavirus (COVID-19)

May 24, 2022 — A special type of MRI found lung abnormalities in patients who had previously had COVID-19, even those ...

Time May 24, 2022
arrow
News | Radiology Business

May 23, 2022 — AHRA, The Association for Medical Imaging Management, the professional organization representing all ...

Time May 23, 2022
arrow
News | Coronavirus (COVID-19)

May 23, 2022 — The clinical and imaging characteristics of COVID-19 breakthrough infections in fully vaccinated patients ...

Time May 23, 2022
arrow
News | Lung Imaging

May 23, 2022 — Xoran Technologies announced they have completed Phase 1 for their NHLBI grant for mobile lung CT. Just ...

Time May 23, 2022
arrow
News | Electronic Medical Records (EMR)

May 20, 2022 — DrChrono Inc., an EverHealth solution and essential platform for modern medical practices, announced that ...

Time May 20, 2022
arrow
News | Contrast Media

May 19 2022 — Recent disruptions in a pharmaceutical supply chain have impacted the global availability of GE Healthcare ...

Time May 19, 2022
arrow
News | Breast Imaging

May 18, 2022 — Therapixel, a company leading the use of AI-based software for women’s health, announces it has released ...

Time May 18, 2022
arrow
Feature | Radiology Business | By Merilee Kern, MBA

Numerous indicators make clear that the next five years will usher in extreme transformation for a multitude of ...

Time May 18, 2022
arrow
News | Digital Pathology

May 17, 2022 — Proscia, a leader in digital and computational pathology solutions, has introduced an automated quality ...

Time May 17, 2022
arrow
Subscribe Now