News | Focused Ultrasound Therapy | February 01, 2016

DARPA Program Exploring Focused Ultrasound Treatment

Team from Columbia University investigating how focused ultrasound therapy could stimulate the peripheral nervous system to help the body heal itself

February 1, 2016 — The Defense Advanced Research Projects Agency (DARPA) has established a new Electrical Prescription (ElectRx) program to help spur research in mapping the neural circuits governing organ systems. The goal of the program is to develop new technologies that could improve physical and mental health by using targeted simulation of the peripheral nervous system to exploit the body’s natural ability to quickly and effectively heal itself.

Our bodies maintain a state of equilibrium, or homeostasis, through our peripheral nervous system, through neural reflexes that modulate the function of organ systems such as the heart, stomach, intestines or bladder. For instance, the vagus nerve linking the brain to the heart can stimulate the heart when an anxiety stimulus is experienced or can stimulate the stomach when hunger is recorded. If researchers could map the neural circuits governing these systems, they might then be able to develop minimally invasive neural and bio-interface technologies with unprecedented levels of precision, targeting and scale.

The agency recently selected seven teams, including a Columbia Engineering team led by Elisa Konofagou, professor of biomedical engineering, which will begin work on Phase 1. Backed by the four-year $3.33 million grant, Konofagou’s team will work on developing a new way to use focused ultrasound for stimulation of peripheral nerves that will ultimately be able to control organ function.

“What we’re working on is a very exciting application for ultrasound,” said Konofagou, who has a joint appointment in radiology (physics). “We could, for the first time, provide a noninvasive approach to nerve and organ stimulation while at the same time advance our understanding of the coupling between the mechanical and electrical activity at the cellular, multi-cellular and organ levels. We think targeted ultrasound could be a good option for managing conditions such as chronic pain and neuropathy.”

Konofagou is collaborating with Ken Shepard, Lau Family Professor of Electrical Engineering and professor of biomedical engineering, and Ellen Lumpkin, associate professor of somatosensory biology at Columbia University Medical Center. The team is working to optimize the ultrasound parameters, develop wearable devices to stimulate the saphenous nerve that runs along the middle of the thigh and along the femoral vessels and is responsible for skin sensation, and determine the mechanism by which ultrasound is capable of inducing such effects.

“We know that, as ultrasound propagates through biological tissue,” Konofagou explained, “it exerts mechanical pressure on that tissue, which stimulates specific mechanosensitive channels in neurons and causes them to ‘turn on.’ So we think that this is a way we can use ultrasound to turn specific nerves ‘on’ or ‘off’ depending on what the treatment calls for.”

In awarding the DARPA grants, Doug Weber, the ElectRx program manager and a biomedical engineer who previously worked as a researcher for the Department of Veterans Affairs, noted, “Using the peripheral nervous system as a medium for delivering therapy is largely new territory and it’s rich with potential to manage many of the conditions that impact the readiness of our military and, more generally, the health of the nation. It will be an exciting path forward.”

For more information: www.bme.columbia.edu

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
Rapid Cardiac MRI Technique May Cut Costs, Boost Care in Developing World
News | Magnetic Resonance Imaging (MRI) | August 29, 2018
A newly developed rapid imaging protocol quickly and cheaply diagnosed heart ailments in patients in Peru, according to...
Brain Study of 62,454 Scans Identifies Drives of Brain Aging
News | SPECT Imaging | August 27, 2018
In the largest known brain imaging study, scientists from five institutions evaluated 62,454 brain single photon...
Abnormal Protein Concentrations Found in Brains of Military Personnel With Suspected CTE

Researchers are using the tracer, which is injected into a patient, then seen with a PET scan, to see if it is possible to diagnose chronic traumatic encephalopathy in living patients. In this image, warmer colors indicate a higher concentration of the tracer, which binds to abnormal proteins in the brain. Credit UCLA Health.

News | PET Imaging | August 24, 2018
August 24, 2018 — In a small study of
Radiation Therapy Affects Event Recall for Children With Brain Tumors
News | Radiation Therapy | August 24, 2018
Children with certain types of brain tumors who undergo radiation treatment are less likely to recall the specifics of...
MRI Study Differentiates Brains of Doers from Procrastinators
News | Neuro Imaging | August 23, 2018
Researchers at Ruhr-Universität Bochum have analysed why certain people tend to put tasks off rather than tackling them...