News | Breast Imaging | August 02, 2016

Clinical Study Confirms Molecular Breast Imaging’s High Cancer Detection Rate in Dense Breast Tissue

American Journal of Roentgenology study used the LumaGEM MBI system on 1,696 women to detect 13 cancers missed by routine mammograms, reporting MBI yielded a high detection rate and low biopsy rate

Lumagem, MBI. nuclear breast imaging, molecular breast imaging

August 2, 2016 — A retrospective study in American Journal of Roentgenology (AJR) August issue confirmed Gamma Medica’s molecular breast imaging (MBI) technology’s high incremental cancer detection rate of 7.7 cancers per thousand and overall clinical effectiveness as a secondary screening tool in finding 13 malignancies among 1,696 women with dense breast tissue following mammograms that read negative for cancer.[1] Approximately 85 percent of these cancers were confirmed to be node negative (with 7.6 percent being confirmed node positive, and 7.6 percent being unknown), indicating they were detected at an early stage and therefore presented a better prognosis.

“This study offers practice-based, clinical proof that for women with dense breast tissue – roughly half the female population in the United States alone – MBI is a powerful tool that finds cancer where a mammogram alone can miss it,” said Robin Shermis, M.D., one of the study’s authors and the medical director at the ProMedica Breast Care Center, Toledo, Ohio, where the research took place. The community-based study used data from routine clinical practice at the facility from 2011 to 2014, focusing on women with aged 25-90 with heterogeneously and extremely dense breast tissue. 

“Following up a mammogram with MBI enables detection of an additional 7.7 cancers per 1000 women screened. It’s also safe and easy to use, delivers almost instantaneous results and is fits perfectly within our workflow,” Shermis said.

For women with dense breast tissue, sensitivity of standardized anatomical screening technology drops significantly (from 85 to 65 percent), making it insufficient to reliably detect cancerous tumors.[2] Meanwhile, these women are up to two times more likely to develop breast cancer. Shermis’s patient at ProMedica, Dianne Anderson, read negative for cancer during her mammogram, but because she had dense breast tissue, Shermis recommended she try MBI3. The MBI showed she had breast cancer, which she has successfully overcome thanks to early detection and multiple treatments.

“Without MBI, I would have no idea I had breast cancer, because my mammogram said I was cancer-free,” Anderson said. “Had I not undergone that MBI after my mammogram, I truly believe I would’ve been in a much more serious stage of cancer. I’m just so thankful MBI was there.”

The study also confirmed that in addition to delivering a high cancer detection rate, nuclear breast imaging affords patients with a high positive predictive value, a high invasive cancer detection rate, minimal radiation and rapid interpretation allowing for real-time readings. Determined to spread awareness on the high degree of certainty MBI offers compared to more conventional screening technologies, the manufacturer of the LumaGEM MBI system used in the study, Gamma Medica, launched the educational Be Certain campaign last month through creating a dedicated website and various social media channels.

“This new study in the AJR provides further evidence that women with dense breast tissue have more comfortable and less stressful alternatives to standardized secondary screening studies. These recent clinical results suggest there is a real alternative to the risk of misdiagnosis and unnecessary biopsies. Our recently launched Be Certain campaign offers more clinical information to a large population of underserved patients,” said Phil Croxford, Gamma Medica’s CEO, pointing to the need to confront the 40,000 deaths at the hands of breast cancer each year.

The AJR study serves as a follow-up to the Mayo Clinic’s prospective, blinded study that was published in the AJR last year that showed MBI yields superior imaging to a mammogram and low-radiation exposure comparable to that of a mammogram, and that MBI also:
•    Increases breast cancer detection rates by 400 percent.4
•    Decreases the cost per cancer detected by 15 percent compared to mammogram alone.5
•    Reduces biopsies by 50 percent compared to other modalities.6
•    Is far more comfortable than a mammogram and other adjunct breast screening technologies.

“This new AJR study shows that what we learned from the Mayo Clinic and AJR studies last year really holds true in a large, routine, community based clinical practice in the real world,” Shermis said. “MBI delivers on its promise and is critical to serving the need of a vast patient population to be certain about their breast health.”

 

Read the article, “Molecular Breast Imaging Deemed Cost-Effective Secondary Breast Cancer Screening Technology.”
 

Read the article, “The Benefits of Molecular Breast Imaging.”

 

For more information, visit www.gammamedica.com

 

References:

1. Shermis, RB, Wilson, K, et al. Supplemental Breast Cancer Screening With Molecular Breast Imaging for Women With Dense Breast Tissue. American Journal of Roentgenology. August 2016.
2. Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. October 2005.
3. Boyd NF, Guo H, Martin LJ, et al. Mammographic Density and the Risk and Detection of Breast Cancer. N Engl J Med. January 2007.
4. Rhodes DJ, Hruska CB, Conners AL, et al. JOURNAL CLUB: Molecular Breast Imaging at Reduced Radiation Dose for Supplemental Screening in Mammographically Dense Breasts. American Journal of Roentgenology. 2015;204(2):241-251.
5. Hruska CB, Conners AL, Jones KN, et al. Diagnostic Workup and Costs of a Single Supplemental Molecular Breast Imaging Screen of Mammographically Dense Breasts. American Journal of Roentgenology. 2015;204(6):1345-1353. doi:10.2214/AJR.14.13306.
6. Rhodes DJ, Hruska CB, Conners AL, et al. JOURNAL CLUB: Molecular Breast Imaging at Reduced Radiation Dose for Supplemental Screening in Mammographically Dense Breasts. American Journal of Roentgenology. 2015;204(2):241-251.
7. Rhodes DJ, Hruska CB, Conners AL, et al. JOURNAL CLUB: Molecular Breast Imaging at Reduced Radiation Dose for Supplemental Screening in Mammographically Dense Breasts. American Journal of Roentgenology. 2015;204(2):241-251.

Related Content

Novel Technique May Significantly Reduce Breast Biopsies
News | Breast Biopsy Systems | January 17, 2019
A novel technique that uses mammography to determine the biological tissue composition of a tumor could help reduce...
Digital Mammography Increases Breast Cancer Detection
News | Mammography | January 16, 2019
The shift from film to digital mammography increased the detection of breast cancer by 14 percent overall in the United...
MIM Software Inc. Receives FDA 510(k) Clearance for Molecular Radiotherapy Dosimetry
Technology | Nuclear Imaging | January 16, 2019
MIM Software Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for molecular radiotherapy...
Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Sponsored Content | Videos | Breast Imaging | January 11, 2019
Supplemental screening with ABUS helps personalize breast care for women with dense breasts and offers advanced...
Mobile App Data Collection Shows Promise for Population Health Surveys
News | Population Health | January 10, 2019
Mobile app data collection can bring access to more potential clinical study participants, reduce clinical study...
Hypertension With Progressive Cerebral Small Vessel Disease Increases Cognitive Impairment Risk
News | Magnetic Resonance Imaging (MRI) | January 08, 2019
Patients with high blood pressure and progression of periventricular white matter hyperintensities showed signs of...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...
Electronic Brachytherapy Effective in Long-Term Study of 1,000 Early-Stage Breast Cancers
News | Brachytherapy Systems, Women's Healthcare | January 07, 2019
Breast cancer recurrence rates of patients treated with intraoperative radiation therapy (IORT) using the Xoft Axxent...