News | Prostate Cancer | October 17, 2017

Cleveland Clinic Researchers Reveal Biomarker for Guiding Prostate Cancer Treatment

Identifying specific genetic variant could help target specific hormonal pathways

Cleveland Clinic Researchers Reveal Biomarker for Guiding Prostate Cancer Treatment

October 17, 2017 — Back-to-back discoveries from Cleveland Clinic demonstrate for the first time how a testosterone-related genetic abnormality can help predict individual patient responses to specific prostate cancer therapies.

The studies, published in the October 12 issue of JAMA Oncology, suggest that men who inherit this variant would benefit from a personalized treatment plan that targets specific hormonal pathways.

The research teams, led by Nima Sharifi, M.D., of the Cleveland Clinic Lerner Research Institute, studied the role of the HSD3B1(1245C) genetic variant in two different prostate cancer patient populations, following androgen deprivation therapy (ADT). ADT works by blocking prostate cancer's supply of male hormones in the testes. It is a cornerstone treatment for recurrent prostate cancer, but it often stops working, allowing cancer to progress and spread. In 2013, Sharifi discovered that prostate cancer cells with the genetic abnormality survive ADT by producing their own androgens.

In the first new study, Sharifi and colleagues from Memorial Sloan Kettering Cancer Center, Harvard/Dana-Farber Cancer Institute and University of Michigan Comprehensive Cancer Center analyzed 213 men whose prostate cancer recurred after radiation therapy and underwent ADT. They found for the first time that following radiation and ADT, prostate cancer was much more likely to spread — and spread rapidly — in men who had the HSD3B1(1245C) variant.

The second study, performed in collaboration with researchers at University of California San Francisco, examined a group of 90 men with metastatic cancer that had become resistant to ADT. These patients were subsequently treated with the drug ketoconazole, which blocks the production of androgens outside of the testes (e.g., those developed by prostate cancer cells that are evading ADT treatment).

Surprisingly, men with the genetic anomaly fared better on ketoconazole than men without the variant. This finding raises the possibility that targeting variant tumors' backup androgen supply (outside of the testes) could be a successful strategy when ADT fails.

"We hypothesized that HSD3B1(1245C) variant tumors become resistant to ADT because they have a backup supply of androgens," said Sharifi. "However, relying on these extra-gonadal androgens makes them more sensitive to ketoconazole."

These discoveries complement earlier studies and support the use of HSD3B1(1245C) as a predictive biomarker to help guide critical treatment decisions. While the outlook of patients with this gene variant is poor, these studies offer hope for a new treatment strategy for these men, and more studies are needed using next-generation androgen inhibitors, such as abiraterone and enzalutamide.

"We are hopeful that these findings will lead to more personalized and effective treatments for prostate cancer," said Sharifi. "If men carry a specific testosterone-related genetic abnormality we may be able to personalize their therapy and treat specific patients more aggressively."

This work was supported by the U.S. Department of Defense, Howard Hughes Medical Institute, Prostate Cancer Foundation, American Cancer Society, the U.S. Army Medical Research and Materiel Command and grants from the National Cancer Institute.

For more information: www.jamanetwork.com/journals/jamaoncology

Related Content

Videos | Radiation Therapy | February 20, 2019
ITN Associate Editor Jeff Zagoudis speaks with Vinai Gondi, M.D., director of research and CNS neuro-oncology at the
Study Unveils Blueprint for Treating Radiation-Resistant Brain Tumor

NIH-funded researchers showed how gliomas may be treated with radiation and drugs that block DNA repair. Image courtesy of Castro lab, Michigan Medicine, Ann Arbor

 

News | Radiation Therapy | February 19, 2019
February 19, 2019 — Researchers at the University of Michigan recently searched for new brain tumor treatments by exp
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Videos | Radiation Therapy | February 15, 2019
ITN Associate Editor Jeff Zagoudis speaks with Vinai Gondi, M.D., director of research and CNS neuro-oncology at the
New Targeted Therapy for Recurrent Brain Tumors Implanted for First Time
News | Radiation Therapy | February 15, 2019
University of Minnesota Health (M Health) is the first in the United States to begin offering GammaTile Therapy, a new...
Micro-Ultrasound and Artificial Intelligence Combining to Detect Prostate Cancer
News | Prostate Cancer | February 12, 2019
Cambridge Consultants has partnered with Exact Imaging, makers of the ExactVu micro-ultrasound platform, as the two...
Canon Adds Radiation Therapy Package to Aquilion Prime, Lightning CT Systems
News | Computed Tomography (CT) | February 11, 2019
In the patient-centric world of radiation oncology, it is critical that computed tomography (CT) simulation is...
Elekta Unity MR-Linac Earns FDA Clearance
Technology | Image Guided Radiation Therapy (IGRT) | February 07, 2019
The Elekta Unity magnetic resonance radiation therapy (MR/RT) system recently received 510(k) premarket notification...
University of Oklahoma Cancer Center Begins First Proton Therapy Treatments
News | Proton Therapy | February 01, 2019
Home to the largest and most comprehensive radiation therapy program in Oklahoma, the Stephenson Cancer Center at OU (...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...