News | Computed Radiography (CR) | November 23, 2015

CIRS Whole Body and Organ Dose Phantoms for Radiation Therapy

dosimetry phantoms

CIRS ATOM phantoms are a full line of anthropomorphic, cross sectional dosimetry phantoms designed to investigate organ dose, whole body effective dose as well as verification of delivery of therapeutic radiation doses.

ATOM is the only line of dosimetry phantoms to range in sizes from newborn to adult. Six models are available: newborn, 1-year, 5-year and 10-year old pediatric phantoms as well as adult male and female phantoms.

Each phantom is sectional in design with traditional 25 mm thick sections. The sectional surfaces are extremely flat and smooth and do not require any special coatings or treatment. This results in minimal interfaces between the slabs when viewed in a scout or projection X-ray. The ATOM line also differs from other dosimetry phantoms by providing optimized TLD locations specific to 21 inner organs.

Tissue-equivalent epoxy resins are used in all aspects of the phantom. CIRS technology offers superior tissue simulation Dosimetry Verification Phantoms by covering a wider range of energy levels from diagnostic to therapeutic. In addition, all bones are homogeneous and are formulated to represent age appropriate, average bone composition. CIRS bone formulations offer distinct advantages over natural skeletons and other types of simulated bone. 

  • Phantom models cover a wide range of patient ages
  • Organ specific dosimetry with minimal detectors
  • Superior tissue simulation and lifelike imaging properties
  • Homogeneous bone
  • Accommodates wide variety of detectors
  • Age appropriate references

This product or an optional accessory of this product requires a CIRS dosimetry cavity code before an order can be placed. Please refer to the Dosimetry Cavity Codes document to identify the CIRS code for the probe you intend to use with this product.

For more information: www.cirsinc.com

Related Content

MD Anderson and Varian Partner to Optimize Radiation Oncology Treatment
News | Treatment Planning | October 18, 2019
The University of Texas MD Anderson Cancer Center and Varian announced a new strategic collaboration to develop an...
Low four-year rates of gastrointestinal (13.6 percent) and urologic issues (7.6 percent) suggest hypofractionated proton therapy as an alternative to traditional radiotherapy to reduce toxicity.

Low four-year rates of gastrointestinal (13.6 percent) and urologic issues (7.6 percent) suggest hypofractionated proton therapy as an alternative to traditional radiotherapy to reduce toxicity.

Feature | Prostate Cancer | October 16, 2019 | By Jeff Zagoudis
Radiation therapy is an important tool in the clinician’s armamentarium for treatment of localized, early-stage prost
Videos | Radiation Oncology | October 11, 2019
Lorraine Drapek, DNP, nurse practitioner, radiation oncology, GI service,...
Patient Treatments With ViewRay's MRIdian Linac Begin in New England
News | Image Guided Radiation Therapy (IGRT) | October 08, 2019
ViewRay Inc. announced today that patient treatments are scheduled to begin in Boston with ViewRay's MRIdian Linac...
ProTom International received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its Radiance 330 proton therapy system
News | Proton Therapy | October 07, 2019
ProTom International received 510(k) clearance from the U.S.
Videos | Prostate Cancer | September 30, 2019
Bill Hartsell, M.D., medical director of the Northwestern Medicine Proton Center in Warrenville, Ill., discusses the
eBook on Hypofractionation in the Age of Value-based Care

eBook on Hypofractionation in the Age of Value-based Care

Sponsored Content | Case Study | Radiation Therapy | September 30, 2019
Hypofractionated and ultrahypofractionated radiation therapy — increasing dose per fraction to enable significantly f
AI Accurately Predicts Radiotherapy Side Effects for Head and Neck Cancer Patients
News | Artificial Intelligence | September 26, 2019
For the first time, a sophisticated computer model has been shown to accurately predict two of the most challenging...