Technology | Magnetic Resonance Imaging (MRI) | September 06, 2017

CIRS Launches New MRI Distortion Check Software

Cloud-based solution quickly and automatically quantifies distortion in MRI images

CIRS Launches New MRI Distortion Check Software

September 6, 2017 — MRI Distortion Check is a new, cloud-based solution designed to quickly and automatically quantify distortion in magnetic resonance images (MRI). Used in conjunction with CIRS MRI Grid phantoms, the software provides the capability to quickly and accurately measure distortion through out the entire image volume.

After automatically detecting thousands of grid intersections, the software registers either a computer-aided detection (CAD) or computed tomography (CT) scan ground truth to these MR-detected control points. An interpolation is then performed to generate 3-D distortion vector fields.

Results can be reported in a variety of output formats including scatter plots, contour plots, box and whisker plots, and DICOM overlays that can be imported to treatment planning systems (TPS) or other third-party software. The software algorithms will work with any grid configuration, and CIRS employs proprietary 3-D printing techniques that enable easy modification of grid phantoms to meet customer requirements.

CIRS will display the MRI Distortion Check Software, along with the Model 604 Large Field MRI Distortion Phantom, and 603A MRI Skull Distortion Phantom, at the 2017 American Society for Radiation Oncology (ASTRO) annual meeting, Sept. 24-27 in San Diego.

For more information: www.cirsinc.com

Related Content

Despite facing challenges such as limited access to personal protective equipment (PPE) following the COVID-19 outbreak, radiation oncology clinics quickly implemented safety and process enhancements that allowed them to continue caring for cancer patients, according to a new national survey from the American Society for Radiation Oncology (ASTRO).

Getty Images

News | Coronavirus (COVID-19) | May 21, 2020
May 21, 2020 — Despite facing challenges such as limited access to...
Advanced imaging data exchange is now live in Colorado due to the partnership of Health Images and the Colorado Regional Health Information Organization

Getty Images

News | Radiology Business | May 18, 2020
May 18, 2020 — 
Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol.

Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol. (A) Experimental timeline. (B) Representative T2WI (using an 11.7T MRI) of the brain of a postnatal day (PND) 11 pup, 1 day after inducing left HII and prior to hNSC transplantation. Note the beginning of an increasingly intense “water signal” (white) on the left (“HII lesion”). (C) Representative T2WI (using an 11.7T MRI) 3 days post-HII, shortly after implantation of SPIO pre-labeled hNSCs into the contralateral cerebral ventricle (“Lateral Vent”). Note the “HII lesion” on the left becoming hyperintense (white) and the black signal void of the SPIO-labeled hNSCs in the lateral ventricle (black arrow). Red arrows denote the needle track. In contrast to what occurs in the intact brain (Figure S4), in a brain subjected to left HII, the implanted SPIO-labeled hNSCs (black signal void) (black arrow) migrate from the right (“R”) to the left (“L”) hemisphere to enter the lesion. (D and E) Shown here (using a 4.7T MRI) are SPIO-labeled hNSCs (black signal void) (black arrow) at 1 month post-implantation into the contralateral ventricle (D) and, in the same representative animal, at 3 months post-implantation (E)–stably integrated and surrounding a much-reduced residual lesion, with no interval enlargement of the graft or ventricles.

News | Magnetic Resonance Imaging (MRI) | May 13, 2020
May 13, 2020 — Scientists at Sanford Burnham Prebys Medical Discov...
Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection.

Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection. Image courtesy of RSNA

News | Coronavirus (COVID-19) | May 11, 2020
May 11, 2020 — Patients with COVID-19 can have b
Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of cancer treatment response in children and youth at much lower levels of radiation than current approaches, suggests a small study funded by the National Institutes of Health.
News | Pediatric Imaging | May 05, 2020
May 5, 2020 — Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of...
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch.

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster c
#coronavirus #covid19 #pandemic #ASTRO20
News | ASTRO | May 04, 2020
May 4, 2020 — Although the 2020 ASTRO Annual Meeting is still m
Two people together in an MRI Scanner along with the accompanying image of their brains

Two people together in an MRI Scanner along with the accompanying image of their brains. Image courtesy of Ville Renvall/ Aalto University

News | Magnetic Resonance Imaging (MRI) | April 30, 2020
April 30, 2020 — Researchers at Aalto University and...
360 Photos | 360 View Photos | April 30, 2020
The company .decimal at ASTRO showed a 3-D prin
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

News | Coronavirus (COVID-19) | April 24, 2020
April 24, 2020 — The Food and Drug Administration (FDA or the Agency) plays a critic