News | January 28, 2015

Cherenkov Emissions Provide Dartmouth Investigators Real-Time Tool for Quality Assurance in Radiation Therapy

Cherenkov light can be imaged and used to confirm that complex spatial dose distribution imparted in dynamic treatment plans is delivered correctly

January 28, 2015 — Using a camera and water tank, investigators from Dartmouth-Hitchcock’s Norris Cotton Cancer Center, led by Brian Pogue, Ph.D., and David J. Gladstone, ScD, demonstrated that induced Cherenkov light can be imaged and used to confirm that the complex spatial dose distribution imparted in dynamic treatment plans is being delivered correctly. The paper “Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation,” was published in Medical Physics.

Cherenkov radiation is emitted and exists as a ‘free’ optical signal that has not been previously utilized,” explained Adam Glaser, lead Ph.D. student on the project. “By imaging the light, we can improve the quality and accuracy of delivered plans to prevent radiation mistakes. This will ultimately improve the overall outcome for patients being treated.”

The Cherenkov Effect is responsible for the characteristic blue glow of nuclear reactors. Although the phenomenon has been constructively utilized for decades in high-energy particle physics and astrophysics, only recently has there been investigation into its utility in radiation therapy. In that context, it is the only current method that can reveal dosimetric information while remaining completely non-invasive. Essentially, the signal comes directly from the water phantom being irradiated rather than introducing detector arrays.

To accomplish this work, a high-sensitivity, intensified CCD camera was set up to take a two-dimensional projected image during delivery of the Intensity-Modulated Radiation Therapy (IMRT) or Volumetric Modulated Arc Therapy (VMAT) plans. The camera focused on a water bath, and was gated to the Linear Accelerator to take a rapid series of photos that were connected to make an ersatz video and used to compare overall light distribution with the original dosing plan.

“Compared to conventional [quality assurance] methods, the advantages of this technique are video-rate, real-time data acquisition, two dimensional projection of 3-D dose distribution, and high spatial resolution that is limited only by the collection optics of the system,” said David J. Gladstone, ScD.

Next steps for the team at Norris Cotton Cancer Center are to extend the system to tomographic 3-D data recovery, as well as continuing clinical trials to investigate Cherenkov light imaged directly from a patient’s tissue surface.

For more information: www.cancer.dartmouth.edu

 

 

Related Content

ProCure Proton Therapy Center New Jersey Celebrates Five-Year Cancer-Free Milestone for Prostate Cancer Patients
News | Proton Therapy | September 20, 2017
ProCure Proton Therapy Center in Somerset, N.J., recently celebrated the five-year cancer-free milestone for the first...
Varian to Showcase Latest Radiation Therapy Technologies and Software at ASTRO 2017
News | Radiation Therapy | September 19, 2017
Varian Medical Systems announced it will be demonstrating its new Halcyon platform and HyperArc high-definition...
Elekta to Highlight MOSAIQ Oncology Analytics at ASTRO Annual Meeting
News | Radiation Therapy | September 19, 2017
September 19, 2017 — Elekta will highlight its Mosaiq Oncology...
Double Targeting Ligands to Identify and Treat Prostate Cancer

The mice were imaged with small-animal PET/CT using 124I-RPS-027 (7.4 MBq [200 μCi]). Credit: JM Kelly et al., Department of Radiology, Weill Cornell Medicine, New York, NY

News | Prostate Cancer | September 14, 2017
Researchers have demonstrated a new, effective way to precisely identify and localize prostate cancer tumors while...
Clinical Trials and Cutting-Edge Radiation Oncology Research to Be Featured at ASTRO 2017
News | Radiation Therapy | September 14, 2017
The program for the 2017 Annual Meeting of the American Society for Radiation Oncology (ASTRO), Sept. 24-27 in San...
Provision Healthcare Joins RayCare Clinical Partners
News | Oncology Information Management Systems (OIMS) | September 11, 2017
Provision, located in Knoxville, Tenn., is the latest to partner with RaySearch Laboratories on the development of its...
U.K.'s NICE Supports Use of Hydrogel Spacer in Prostate Cancer Treatement
News | Patient Positioning Radiation Therapy | September 08, 2017
Augmenix Inc. announced that the National Institute for Health and Care Excellence (NICE) in the U.K. has issued...
Sponsored Content | Videos | Radiation Therapy | September 08, 2017
The new Visicoil MR is a helically-wound, flexible linear fiducial marker.
FDG-PET/CT Predicts Melanoma Patients' Response to Immune Checkpoint Inhibitor Therapy
News | PET-CT | September 07, 2017
September 7, 2017 — Advanced melanoma has a poor prognosis, but immune checkpoint inhibitor therapy can be effective
CIRS Launches New MRI Distortion Check Software
Technology | Magnetic Resonance Imaging (MRI) | September 06, 2017
MRI Distortion Check is a new, cloud-based solution designed to quickly and automatically quantify distortion in...
Overlay Init