News | January 28, 2015

Cherenkov Emissions Provide Dartmouth Investigators Real-Time Tool for Quality Assurance in Radiation Therapy

Cherenkov light can be imaged and used to confirm that complex spatial dose distribution imparted in dynamic treatment plans is delivered correctly

January 28, 2015 — Using a camera and water tank, investigators from Dartmouth-Hitchcock’s Norris Cotton Cancer Center, led by Brian Pogue, Ph.D., and David J. Gladstone, ScD, demonstrated that induced Cherenkov light can be imaged and used to confirm that the complex spatial dose distribution imparted in dynamic treatment plans is being delivered correctly. The paper “Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation,” was published in Medical Physics.

Cherenkov radiation is emitted and exists as a ‘free’ optical signal that has not been previously utilized,” explained Adam Glaser, lead Ph.D. student on the project. “By imaging the light, we can improve the quality and accuracy of delivered plans to prevent radiation mistakes. This will ultimately improve the overall outcome for patients being treated.”

The Cherenkov Effect is responsible for the characteristic blue glow of nuclear reactors. Although the phenomenon has been constructively utilized for decades in high-energy particle physics and astrophysics, only recently has there been investigation into its utility in radiation therapy. In that context, it is the only current method that can reveal dosimetric information while remaining completely non-invasive. Essentially, the signal comes directly from the water phantom being irradiated rather than introducing detector arrays.

To accomplish this work, a high-sensitivity, intensified CCD camera was set up to take a two-dimensional projected image during delivery of the Intensity-Modulated Radiation Therapy (IMRT) or Volumetric Modulated Arc Therapy (VMAT) plans. The camera focused on a water bath, and was gated to the Linear Accelerator to take a rapid series of photos that were connected to make an ersatz video and used to compare overall light distribution with the original dosing plan.

“Compared to conventional [quality assurance] methods, the advantages of this technique are video-rate, real-time data acquisition, two dimensional projection of 3-D dose distribution, and high spatial resolution that is limited only by the collection optics of the system,” said David J. Gladstone, ScD.

Next steps for the team at Norris Cotton Cancer Center are to extend the system to tomographic 3-D data recovery, as well as continuing clinical trials to investigate Cherenkov light imaged directly from a patient’s tissue surface.

For more information: www.cancer.dartmouth.edu

 

 

Related Content

SpaceOAR Hydrogel Now Available in Japan
News | Patient Positioning Radiation Therapy | July 16, 2018
Augmenix K.K. announced that SpaceOAR hydrogel, a soft, implanted absorbable gel spacer is now available to all...
RaySearch Releases New Version of RayCare OIS
Technology | Oncology Information Management Systems (OIMS) | July 13, 2018
RaySearch has released RayCare 2A, the latest version of its flagship oncology information system (OIS). RayCare is...
Lack of Insurance Coverage Delaying Proton Therapy Clinical Trials
News | Proton Therapy | July 12, 2018
Randomized clinical trials are the gold standard of cancer research and can shed light on whether innovative, new...
Bruce Power Joins Forces With ITM to Supply Lutetium-177 for Cancer Therapy
News | Radiation Therapy | July 11, 2018
Canadian nuclear power company Bruce Power and German-based Isotope Technologies Garching (ITG) signed an agreement to...
MedStar Georgetown University Hospital Now Clinical With RayStation and Hyperscan
News | Treatment Planning | July 05, 2018
MedStar Georgetown University Hospital in Washington D.C., has begun patient treatments using the RayStation treatment...
Northern Centre for Cancer Care (NCCC)

Northern Centre for Cancer Care (NCCC).

Sponsored Content | Case Study | Radiation Therapy | July 05, 2018
Established in 2009, Northern Centre for Cancer Care (NCCC) is the largest center of its kind in the north of England....
Researcher Investigates Eliminating Radiation for HER2-Positive Breast Cancer
News | Radiation Therapy | July 02, 2018
Researchers at The University of Kansas Cancer Center have launched a clinical trial that eliminates radiation from the...
New Prostate Cancer Radiotherapy Technique Aims to Preserve Sexual Function
News | Radiation Therapy | June 18, 2018
A multicenter clinical trial being led by UT Southwestern physicians is testing a technique for sparing nerve bundles...
Elekta Unity High-Field MR-Linac Receives CE Mark
News | Image Guided Radiation Therapy (IGRT) | June 18, 2018
Elekta announced that its Elekta Unity magnetic resonance radiation therapy (MR/RT) system has received CE mark,...
Washington University in St. Louis Begins Clinical Treatments With ViewRay MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | June 14, 2018
June 14, 2018 — The Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in S
Overlay Init