Technology | December 23, 2014

Brit Systems Launches Advanced Web-based 3D Viewing Tools

Add-in for WebWorks image browser allows 3-D viewing for any DICOM-based viewer

Brit Systems, WebWorks 3-D, advanced visualization, PACS, RSNA 2014

December 23, 2014 — Brit Systems released WebWorks 3D, an optional add-in tool for the company’s WebWorks zero-footprint image browser, at the 2014 Radiological Society of North America (RSNA) annual meeting and scientific assembly.

The 3-D tools include viewing a 3-D rendering that can be rotated; MIPS and MPRs, magnification, cross reference and locate tools, measurement tools and snapshot tools so an image can be saved as DICOM to the server for others to view. WebWorks provides browser-based viewing to any DICOM-capable picture archive and communication system (PACS) and vendor neutral archive (VNA), supports federating timelines across multiple DICOM servers and can be made available via URLs from within electronic medical records (EMRs). WebWorks 3D is available for locally installed systems or it can also be purchased as a service offering. The system is sized by the number of concurrent images that will be rendered.

For more information: www.brit.com

Related Content

Of all the buzzwords one would have guessed would dominate 2020, few expected it to be “virtual”. We have been virtualizing various aspects of our lives for many years, but the circumstances of this one has moved almost all of our lives into the virtual realm.

Getty Images

Feature | Radiology Education | September 18, 2020 | By Jef Williams
Of all the buzzwords one would have guessed would dominate 2020, few expected it to be “virtual”.
Videos | Cardiac Imaging | August 12, 2020
Advanced visualization company...
Siemens Partnership will make better health easier throughout Pennsylvania and in all communities that Geisinger serves

Getty Images

News | Radiology Business | June 08, 2020
June 8, 2020 — Siemens Healthineers and Geisinger have estab
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch.

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster c
Two examples of CT myocardial perfusion (CTP) imaging assessment software. Canon is on the left and GE Healthcare is on the right. Both of these technologies have been around for a few years, but there have been an increasing amount of clinical data from studies showing the accuracy of the technology compared to nuclear imaging, the current stand of care for myocardial perfusion imaging, and cardiac MRI. #SCCT #perfusionimaging 

Two examples of CT myocardial perfusion (CTP) imaging assessment software. Canon is on the left and GE Healthcare is on the right. Both of these technologies have been around for a few years, but there have been an increasing amount of clinical data from studies showing the accuracy of the technology compared to nuclear imaging, the current stand of care for myocardial perfusion imaging, and cardiac MRI.

News | Computed Tomography (CT) | March 16, 2020
March 16, 2020 — The Society of Cardiovascular Computed Tomography (SCCT) released a new...
An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019.

An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019. Photo by Dave Fornell.

Feature | Artificial Intelligence | February 07, 2020 | Sanjay Parekh, Ph.D. 
February 7, 2020 – At the 2019 Radiological Society...
Carestream’s X-ray digital tomosynthesis functionality creates three-dimensional datasets from digital radiography (DR) that can be scrolled through similar to computed tomography (CT) imaging. It received 510(k) clearance from the U.S. Food and Drug Administration (FDA) in January 2020. Digital tomosynthesis uses a single sweep of X-ray exposures and streamlines operator workflow by separating the process of DT exposure acquisition from image volume formation.
News | Digital Radiography (DR) | January 15, 2020
January 15, 2020 — Carestream’s X-ray digital tomosynthesis (DT) functionality, which creates three-dimensional datas
Videos | Advanced Visualization | December 30, 2019
This is a hologram of a fracture from a...