News | December 17, 2013

Brain Chemical Ratios Help Predict Developmental Delays in Preterm Infants

New study identifies potential biomarker for predicting high risk for motor development in premature infants

Researchers have identified a potential biomarker for predicting whether a premature infant is at high risk for motor development problems, according to a study published online in the journal Radiology.

“We are living in an era in which survival of premature birth is more common,” said Giles S. Kendall, Ph.D., consultant for the neonatal intensive care unit at University College London Hospitals NHS Foundation Trust and honorary senior lecturer of neonatal neuroimaging and neuroprotection at the University College London. “However, these infants continue to be at risk for neurodevelopmental problems.”

Patients in the study included 43 infants (24 male) born at less than 32 weeks gestation and admitted to the neonatal intensive care unit (NICU) at the University College of London between 2007 and 2010. Dr. Kendall and his research team performed magnetic resonance imaging (MRI) and MR spectroscopy (MRS) exams on the infants at their approximate expected due dates (or term-equivalent age). MRS measures chemical levels in the brain.

The imaging studies were focused on the white matter of the brain, which is composed of nerve fibers that connect the functional centers of the brain. “The white matter is especially fragile in the newborn and at risk for injury,” Kendall explained.

One year later, 40 of the 43 infants were evaluated using the Bayley Scales of Infant and Toddler Development, which assess fine motor, gross motor and communication abilities. Of the 40 infants evaluated, 15 (38 percent) had abnormal composite motor scores and four (10 percent) showed cognitive impairment.

Statistical analysis of the MRS results and Bayley Scales scores revealed that the presence of two chemical ratios—increased choline/creatine (Cho/Cr) and decreased N-acetylaspartate/choline (NAA/Cho)—at birth were significantly correlated with developmental delays one year later.

“Low N-acetylaspartate/choline and rising choline/creatine observed during MRS at the baby’s expected due date predicted with 70 percent certainty which babies were at high risk for motor development problems at one year,” Kendall said.

Kendall said a tool to predict the likelihood of a premature baby having neurodevelopmental problems would be useful in determining which infants should receive intensive interventions and in testing the effectiveness of those therapies.

“Physiotherapy interventions are available but are very expensive, and the vast majority of premature babies don’t need them,” Kendall said. “Our hope is to find a robust biomarker that we can use as an outcome measure so that we don’t have to wait five or six years to see if an intervention has worked.”

Kendall said severe disability associated with premature births has decreased over the past two decades as a result of improved care techniques in the NICU. However, many premature infants today have subtle abnormalities that are difficult to detect with conventional MRI.

“There’s a general shift away from simply ensuring the survival of these infants to how to give them the best quality of life,” he said. “Our research is part of an effort to improve the outcomes for prematurely born infants and to identify earlier which babies are at greater risk.”

For more information: http://radiology.rsna.org/

 

Related Content

Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
Clinical Data Supports Use of Xoft System for Endometrial Cancer
News | Brachytherapy Systems | August 03, 2017
Researchers presented clinical data supporting use of the Xoft Axxent Electronic Brachytherapy (eBx) System for the...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init