News | Neuro Imaging | October 28, 2016

Brain Changes Seen in Youth Football Players without Concussion

Comparison of pre- and post-season MRI scans reveal changes in the flow of water in the brain in players not displaying signs of concussion

youth football players, brain changes, no concussion, MRI study, Wake Forest, Christopher Whitlow, Radiology journal

MR images of left inferior fronto-occipital fasciculus (top) before and (middle) after the playing season, and (bottom) the overlay. In the overlay (bottom), the red region is after the season and the blue region is before the season. Image courtesy of the Radiological Society of North America.

October 28, 2016 — Researchers have found measurable brain changes in children after a single season of playing youth football, even without a concussion diagnosis, according to a new study published online in the journal Radiology.

According to USA Football, there are approximately 3 million young athletes participating in organized tackle football across the country. Numerous reports have emerged in recent years about the possible risks of brain injury while playing youth sports and the effects it may have on developing brains. However, most of the research has looked at changes in the brain as a result of concussion.

“Most investigators believe that concussions are bad for the brain, but what about the hundreds of head impacts during a season of football that don’t lead to a clinically diagnosed concussion? We wanted to see if cumulative sub-concussive head impacts have any effects on the developing brain,” said the study’s lead author, Christopher T. Whitlow, M.D., Ph.D., MHA, associate professor and chief of neuroradiology at Wake Forest School of Medicine in Winston-Salem, N.C.

The research team studied 25 male youth football players between the ages of 8 and 13. Head impact data were recorded using the Head Impact Telemetry System (HITs), which has been used in other studies of high school and collegiate football to assess the frequency and severity of helmet impacts. In this study, HITs data were analyzed to determine the risk weighted cumulative exposure associated with a single season of play.

The study participants underwent pre- and post-season evaluation with multimodal neuroimaging, including diffusion tensor imaging (DTI) of the brain. DTI is an advanced magnetic resonance imaging (MRI) technique, which identifies microstructural changes in the brain’s white matter. In addition, all games and practices were video recorded and reviewed to confirm the accuracy of the impacts.

The brain’s white matter is composed of millions of nerve fibers called axons that act like communication cables connecting various regions of the brain. Diffusion tensor imaging produces a measurement, called fractional anisotropy (FA), of the movement of water molecules in the brain and along axons. In healthy white matter, the direction of water movement is fairly uniform and measures high in FA. When water movement is more random, FA values decrease, which has been associated with brain abnormalities in some studies.

The results showed a significant relationship between head impacts and decreased FA in specific white matter tracts and tract terminals, where white and gray matters meet.

“We found that these young players who experienced more cumulative head impact exposure had more changes in brain white matter, specifically decreased FA, in specific parts of the brain,” Whitlow said. “These decreases in FA caught our attention, because similar changes in FA have been reported in the setting of mild TBI [traumatic brain injury].”

It is important to note that none of the players had any signs or symptoms of concussion.

“We do not know if there are important functional changes related to these findings, or if these effects will be associated with any negative long-term outcomes,” Whitlow said. “Football is a physical sport, and players may have many physical changes after a season of play that completely resolve. These changes in the brain may also simply resolve with little consequence. However, more research is needed to understand the meaning of these changes to the long-term health of our youngest athletes.”

For more information: www.pubs.rsna.org/journal/radiology

Related Content

Novel Technique May Significantly Reduce Breast Biopsies
News | Breast Biopsy Systems | January 17, 2019
A novel technique that uses mammography to determine the biological tissue composition of a tumor could help reduce...
Digital Mammography Increases Breast Cancer Detection
News | Mammography | January 16, 2019
The shift from film to digital mammography increased the detection of breast cancer by 14 percent overall in the United...
Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Mobile App Data Collection Shows Promise for Population Health Surveys
News | Population Health | January 10, 2019
Mobile app data collection can bring access to more potential clinical study participants, reduce clinical study...
Hypertension With Progressive Cerebral Small Vessel Disease Increases Cognitive Impairment Risk
News | Magnetic Resonance Imaging (MRI) | January 08, 2019
Patients with high blood pressure and progression of periventricular white matter hyperintensities showed signs of...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...
Electronic Brachytherapy Effective in Long-Term Study of 1,000 Early-Stage Breast Cancers
News | Brachytherapy Systems, Women's Healthcare | January 07, 2019
Breast cancer recurrence rates of patients treated with intraoperative radiation therapy (IORT) using the Xoft Axxent...
Brachytherapy Alone Superior Treatment for Intermediate-Risk Prostate Cancer
News | Brachytherapy Systems | January 04, 2019
Patient-reported outcomes (PROs) indicated a significantly different clinician and patient-reported late toxicity...
Breast Cancer Patients Have Less Heart Damage With Heart Drug and Trastuzumab
News | Cardio-oncology | January 03, 2019
Breast cancer patients who take a heart drug at the same time as trastuzumab have less heart damage, according to a...