Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | July 28, 2011

CardioGen Reveals Cardiac PET’s Soft Underbelly

Typically, the only radiation facing travelers is from the airport scanners they must walk through to board airplanes. Not so, however, for two travelers who set off radiation alarms when crossing the U.S. border earlier this month, an incident whose fallout threatens the future of cardiac PET.

Early this week the FDA warned U.S. healthcare providers to stop using the radioisotope generator commonly used to perform PET exams of the heart. Soon after Bracco Diagnostics, the maker of CardioGen-82, voluntarily recalled the cardiac generator (“FDA: Stop Using CardioGen-82 Due to Increased Radiation Exposure”).

An investigation by the FDA had found that CardioGen-82 had months earlier led to the dosing of the two travelers not only with rubidium-82,  the very short half-life isotope needed for their cardiac scans, but also with strontium, a much longer lived isotope. The inadvertent dosing, according to the FDA, was due to a failure in the manufacturing process called “strontium breakthrough.”

The resulting exposure of patients to excess radiation illustrates the vulnerability of imaging devices that depend on radioisotopes. Anyone familiar with nuclear cardiology, which depends heavily on the radioisotope technetium, understands how vulnerable these devices are.

An aging Canadian reactor with a distressingly long history of shutdowns supplies the molybdenum radioisotope that generate most of the technetium used in the U.S. for cardiac SPECT studies. When this reactor shut down, spurring a 15-month technetium shortage, PET advocates – led by Bracco Diagnostics – began recruiting nuclear cardiologists to switch from SPECT to PET. (“Time for a New Normal in Nuclear Cardiology?”). This alternative, they said, was not vulnerable to such shortages.  For those who were convinced, the recent news is not only ironic, but troubling.

In its warning to healthcare providers, the FDA noted that “the risk of harm from this exposure is minimal” and that “it would take much more radiation to cause any severe adverse health effects in patients.” (“CardioGen-82 PET Scan: Drug Safety Communication - Increased Radiation Exposure”)  Yet estimates derived from mathematical modeling done at the Los Alamos National Laboratory indicate that exposure for the two patients may be as high as 90 mSv – more than 30 times the normal dose of a cardiac PET scan. And it is not certain that these two patients are the only ones who have been so exposed. The FDA is now trying to find out how many, if any, more patients suffered excess radiation dose due to strontium breakthrough.

One question not being asked is why this unexpected exposure was detected at a U.S. border crossing instead of the PET suites where the scans were performed. Moreover, how could such excess doses occur in the first place? Are no tests required to ensure the purity of rubidium chloride before it is injected into patients?

Toward that end, the FDA is looking into the sufficiency of the testing procedures used to detect strontium breakthrough at clinical sites using CardioGen-82. Obviously, they are not sufficient, at least not everywhere. But they will have to be soon, or cardiac PET may have a tough time recovering from a shortage that should have never been.

Editor's note: For additional information about this incident and the product recall, visit www.cardiogen.com.


Related Content

News | ASTRO

June 21, 2024 — The American Society for Radiation Oncology (ASTRO) announced today that following a nationwide search ...

Time June 21, 2024
arrow
News | Nuclear Imaging

June 20, 2024 — GE HealthCare joined the world’s top medical and academic institutions at the Society of Nuclear ...

Time June 20, 2024
arrow
News | Proton Therapy

June 14, 2024 — Atlantic Health System, an integrated health care system setting standards for quality health care in ...

Time June 14, 2024
arrow
News | PET Imaging

June 14, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 14, 2024
arrow
News | SNMMI

June 13, 2024 — The Society of Nuclear Medicine and Molecular Imaging (SNMMI) hosted more than 8,000 physicians ...

Time June 13, 2024
arrow
News | PET-CT

June 13, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 13, 2024
arrow
News | Radiology Business

June 12, 2024 — Cathy Sue Cutler, PhD, FSNMMI, chair of the Isotope Research and Production Department at Brookhaven ...

Time June 12, 2024
arrow
News | SPECT-CT

June 11, 2024 — A newly developed radiotracer can generate high quality and readily interpretable images of cardiac ...

Time June 11, 2024
arrow
News | PET Imaging

June 11, 2024 — A new ultra-high-performance brain PET system allows for the direct measurement of brain nuclei as never ...

Time June 11, 2024
arrow
News | Radiology Business

June 10, 2024 — Jean-Luc C. Urbain, MD, PhD, FASNC, professor of Radiology/Nuclear Medicine and Medicine, has been named ...

Time June 10, 2024
arrow
Subscribe Now