Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Enterprise Imaging| May 17, 2017

Agents of Change: Cybersecurity In A World Of Old And New

cybersecurity

Mobile devices and standards that support interoperability stand out in the shadowy world of cyber intrusions. They allow access to patient files, the making of information requests, the placing of exam orders from anywhere at any time. Those devices may be smartphones or tablets — each with varying levels of security.

With increasing interoperability, data from multiple systems will be viewed simultaneously on a single screen — prior images beside those from exams just completed, displayed in windows beside ones with path reports, vital signs and demographics pulled from patient histories.

In an efficiently constructed and maintained enterprise imaging system, this stream of information will give radiologists and clinicians an unprecedented edge in making better decisions. For those in charge of cybersecurity, it could be a nightmare.

The more nodes in a network, the more opportunities for hackers to break in. And user-owned mobile devices — the so-called bring your own devices (BYODs) — will further increase the risk by reducing the medical institution's control.

 

HIPAA Requirements

Regulation promises some protection. To stay on the right side of the Health Insurance Portability and Accountability Act (HIPAA), medical images must be transferred securely and accessed only by authenticated users. (Notably, secure transfer and user authentication is up to the provider.) Tablet applications for radiology, including ones used on the iPad, often use the secure socket layer (SSL) protocol or virtual private networks that lessen risk of hacking when transferring and accessing images. To eliminate the risk that patient data might be lost if tablets are misplaced or stolen, images are accessed only from the server through login-based interfaces and image display typically stops after a preset time.

Adding BYOD mobile devices increases the risk of cyberintrusion. Because they own the device, users may add whatever software they (or their families) like, just as they may access entertainment sites that may harbor malware or viruses. BYOD mobile devices that transmit or store patient data in ways that are not HIPAA compliant give medical providers the biggest headaches, as lost or stolen devices can be hacked for the information they possess.

These problems can be addressed through a strict BYOD policy, one that details the apps and links not permitted on a BYOD; keeps security software updated; requires the use of a strong password; encrypts devices, while detailing how data can be wiped from lost or stolen devices; periodically audits devices for policy compliance; requires multifactor authentication to access patient data; and describes training for users on cybersecurity practices.

In short, HIPAA requirements applied to conventional means for accessing patient data should (must) be applied to BYODs.

 

FDA Steps In

But there is plenty to worry about in regard to traditional equipment, as well. Last year, the Food and Drug Administration (FDA) issued recommendations for industry (and agency staff) about how to manage some of these risks. The "nonbinding" guidance, which the agency says represents its "current thinking," notes that the software in networked medical devices may be vulnerable to hackers and, therefore, "typically requires continual maintenance throughout the product life cycle." That is good advice, especially for radiology.

Aging medical equipment — X-ray, CT, MRI and PET systems well past their prime, for example — make tempting targets for hackers. The operating systems onboard this equipment often is no longer supported by their makers, for example, Windows NT and XP.

The theft of patient-specific insurance data or personal data such as a Social Security numbers represent one opportunity for hackers. Another is ransomware, so named because it encrypts data that can only be decrypted by the cybercriminal, who typically requires the victim to pay a ransom to do so.

Of greatest concern to the FDA are malware and viruses that might physically harm patients. An infected implantable defibrillator or pacemaker might be reprogrammed by a hacker in ways that could cause injury or death, according to the FDA's guidance "Postmarket Management of Cybersecurity in Medical Devices." Of lesser consequence, but still a threat, is malware that causes a medical device to spit out incorrect data.

Alternatively, malware might collect Internet browsing information. Although patient harm may be limited, the FDA still suggests that the product be patched or updated to reduce or eliminate the threat.

And this threat is already frightening. Last year cybercriminals made off with data from 13 million patient records, according to Symantec Corp. Banner Health alone reported a data breach affecting 3.7 million patients and staff.

Effective cybersecurity is possible, but providers and manufacturers must be cautious. The need for vigilance will increase as interoperability standards raise the number of devices on a network and the BYOD trend gathers steam among medical practitioners.

Editor’s note: This is the third blog in four-part series on Agents of Change. The first blog, “iPads On Track To Be Radiologists' BYOD of Choice,” can be found here. The second blog, “Agents of Change: Interoperability Standards Offer Carrot Over Stick” can be found here.

Related Content

Technology | Archive Cloud Storage | May 19, 2017
Visage Imaging Inc. announced Visage 7 Open Archive is now available in North America, comprising the latest modular...
Sponsored Content | Videos | Enterprise Imaging | May 10, 2017
Philips' mission is to build intuitive, scalable and customizable products that can be easily adapted to customers'...
cyber crime cybersecurity in radiology, healthcare and medicine
Feature | Information Technology | May 05, 2017 | By Greg Freiherr
The radiology landscape is pocked with cyber mines. And it’s getting worse. Legacy imaging systems are connected to...
Sponsored Content | Videos | Enterprise Imaging | May 02, 2017
Mach7 offers an enterprise imaging platform built around neutrality. The platform is more than just a VNA. Eric Rice,...
News | PACS Accessories | April 25, 2017
April 25, 2017 — ImageMoverMD announced the availability of ImageMover Media, a universal, web-based solution to...
News | Enterprise Imaging | April 14, 2017
Medicalis recently announced that Mercy, the fifth largest Catholic health system in the U.S., has completed its...
Reno Diagnostic Centers Installs Carestream Clinical Collaboration Platform
News | Enterprise Imaging | April 12, 2017
Reno Diagnostic Centers (RDC) in Reno, Nev., recently expanded its radiology picture archiving and communication system...
Client Outlook Releases Version 6 of eUnity Image Viewing Platform
Technology | Enterprise Imaging | April 12, 2017
April 12, 2017 — Client Outlook recently announced the latest release of its flagship diagnostic and clinical image v
Sectra, PACS contract, University of Pennsylvania Health System, RSNA 2017
News | PACS | April 05, 2017
International medical imaging IT and cybersecurity company Sectra recently announced that the University of...
News | Enterprise Imaging | March 30, 2017
Intelerad Medical Systems recenlty announced that Australia’s Primary Health Care Limited (Primary) has selected...
Overlay Init