News | Radiation Therapy | May 25, 2021

Automated 3D Dose-volume Verification: Gearing Up for Complex Planning scenarios

LAP is prioritizing clinical awareness, uptake and application of the automated 3D dose-check functionality now incorporated into its RadCalc QA software

LAP is prioritizing clinical awareness, uptake and application of the automated 3D dose-check functionality now incorporated into its RadCalc QA software

May 25, 2021 — Independent verification always has been, and likely always will be, the core value proposition for RadCalc QA secondary check software. For more than two decades, this suite of widely deployed quality assurance (QA) tools has provided medical physicists and dosimetrists with fully automated and independent dosimetric verification of their radiotherapy treatment planning systems (TPS). What’s more, ongoing product innovation saw the RadCalc value proposition advance significantly last year with the clinical roll-out of automated 3-D dose-volume verification – a result of the successful integration of Monte Carlo and collapsed-cone convolution superposition algorithms into the platform.

“With 3-D dose verification, we’re offering end-users a higher degree of certainty that the planning treatment volume is being validated, while assisting in the evaluation of plan quality by comparing dose to adjacent critical structures and organs at risk,” explained Craig Laughton, CTO and co-founder of the RadCalc software portfolio, part of LAP’s growing QA product line in radiotherapy. “That certainty translates into better targeting accuracy and dose distribution accuracy – and ultimately enhanced treatment outcomes – for the more than 2300 cancer centres that use RadCalc on a daily basis for patient QA.” As part of that QA workflow, all the physicist has to do is export a treatment plan via their DICOM RT and RadCalc will automatically verify the plan using either a Monte Carlo or collapsed-cone algorithm, generating results in minutes. If the treatment plan doesn’t pass various preset criteria, RadCalc will prompt the user to investigate what’s going on using a suite of dose analysis tools. “The user can slice-and-dice the plan just about any way they want by using our proven traditional workflows,” added Laughton, “while RadCalc’s new dependable features evaluate the cause of any discrepancies and determine the course of action.”

A 3-D take on patient QA
Among the early-adopters of RadCalc’s collapsed-cone convolution superposition algorithm are Joshua Robinson and colleagues at the James A Haley Veterans’ Hospital in Tampa, Fla. Robinson is one of four medical physicists within the clinic’s radiation oncology programme, overseeing a suite of three Varian treatment machines (including a new TrueBeam Edge system that’s currently being commissioned) and an Accuray CyberKnife treatment system, a robotic radiotherapy platform widely deployed in treating a range of disease indications using stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). “Our clinic supports cancer treatments across a predominantly male cohort of military veterans – so we see a lot of prostate, lung and head-and-neck patients,” explained Robinson. When it comes to patient QA, the James A Haley Hospital is a long-time RadCalc customer, with the product a key enabling technology in the “second-check everything” default setting of the radiation oncology department. “We like RadCalc functionality a lot – as well as all the support that comes with it,” Robinson added. “The software offers a powerful engine for second-check QA calculations, while the intuitive reporting integrates seamlessly into our clinical workflow.”

As a “lighthouse customer”, the Tampa clinic was among the first beta test sites chosen to evaluate RadCalc’s automated 3D dose-volume verification functionality – and specifically the software’s new collapsed-cone convolution superposition algorithm. The motivation, says Robinson, is to maintain confidence in the QA accuracy across harder-to-treat clinical indications – for example, small tumour targets surrounded by lung heterogeneities – as well providing independent QA checks across a range of advanced treatment modalities, including SRS, SBRT, intensity-modulated radiotherapy (IMRT), volumetric modulated-arc therapy (VMAT) and hypofractionation. “We’re still evaluating the collapsed-cone algorithm as part of our daily clinical practice,” noted Robinson. “One thing is already evident though: 3D dose verification increases your likelihood of getting a better, more accurate picture of dose distribution inside the patient. You’re doing the calculation on the planning CT – just like the TPS is doing the calculation on the planning CT – so you’re no longer just relying on a single dose point for the QA comparison.”

That’s especially important in more challenging treatment planning scenarios such as advanced head-and-neck cancers and late-stage prostate and rectal disease – indications that often require larger, heavily modulated treatment fields that are problematic in terms of conventional point-dose QA checks. Near term, Robinson sees the biggest clinical opportunity for 3D dose verification in the hospital’s lung SBRT patients, allowing treatment planners to accommodate the high dose per fraction while providing confidence in the steep dose gradients calculated by the TPS. ´“Depending on the size of the tumour and its location in the lung,” he noted, “a more complex planning technique is needed by the dosimetrists in order to achieve the steep dose gradients that minimize dose to the adjacent chest wall, heart and normal blood vessels. The Gamma Analysis and 3D comparison functionality in RadCalc help us to maintain confidence in the treatment plan along with our patient QA checks on the treatment machine.”

The QA roadmap
Right now, the RadCalc team is putting the finishing touches to the software roadmap for 2021 and beyond, including the imminent release of 3D EPID-based functionality to underpin true measurement-based IMRT QA and in vivo verification. In short, RadCalc will import the necessary EPID data/image files, process them, and then send to the collapsed-cone dose engine to calculate the dose. “The 3D EPID solution alongside delivery log file analysis will provide the most comprehensive patient QA solution on the market,” concluded Laughton. More broadly, RadCalc’s incorporation into the LAP group (in January 2019) has opened up new growth opportunities within the latter’s evolving product portfolio for radiation therapy. LAP’s offering for radiotherapy customers currently comprises laser systems for patient positioning, a suite of QA software and phantoms, as well as specialist beam-shaping technologies.

For more information: https://physicsworld.com/

 

Related Content

Master Supply Agreement encompasses clinical development and commercial supply for Clarity’s Cu-67-based candidates to treat neuroblastoma, breast and prostate cancers, among others
News | Radiopharmaceuticals and Tracers | June 22, 2021
June 22, 2021 — NorthStar Medical Radioisotopes, LLC, a global innovator in the development, production and commercia
Elekta Harmony linear accelerator cleared by U.S. Food and Drug Administration
News | Linear Accelerators | June 18, 2021
June 18, 2021 — Elekta announced that its Elekta Harmony...
SNMMI's Image of the Year is a detailed depiction of areas of cognitive impairment, neurological symptoms and comparison of impairment over a six-month time frame

Figure 1. A: COVID-19-related spatial covariance pattern of cerebral glucose metabolism overlaid onto an MRI template. Voxels with negative region weights are color-coded in cool colors, and regions with positive region weights in hot colors. B: Association between the expression of COVID-19-related covariance pattern and the Montreal Cognitive Assessment (MoCA) score adjusted for years of education. Each dot represents individual patient. C: Results of a statistical parametric mapping analysis. Upper row illustrates regions that show significant increases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the subacute stage (paired t test, p < 0.01, false discovery rate-corrected). Bottom row depicts regions that still show significant decreases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the age-matched control cohort at an exploratory statistical threshold (two-sample t test, p < 0.005). Image Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg

News | PET Imaging | June 16, 2021
June 16, 2021 — The effects of COVID-19 on the b
The impact of deploying artificial intelligence (AI) for radiation cancer therapy in a real-world clinical setting has been tested by Princess Margaret researchers in a unique study involving physicians and their patients.

Getty Images

News | Artificial Intelligence | June 15, 2021
June 15, 2021 — The impact of deploying ...
Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT
News | Computed Tomography (CT) | June 14, 2021
June 14, 2021 — Heart disease and cancer are the ...
Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...
The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

News | X-Ray | June 10, 2021
June 10, 2021 — Engineers at Duke University have demonstrated a prot
Prof. Jayant Vaidya, lead author of the study, University College London surgery and interventional science, performs a TARGI-IORT procedure. A small ball-shaped device placed inside the breast, directly where the cancer had been. The single-dose treatment lasts for around 20-30 minutes and replaces the need for extra hospital visits in eight out of ten cases.

Prof. Jayant Vaidya, lead author of the study, University College London surgery and interventional science, performs a TARGI-IORT procedure. A small ball-shaped device placed inside the breast, directly where the cancer had been. The single-dose treatment lasts for around 20-30 minutes and replaces the need for extra hospital visits in eight out of ten cases.

News | Radiation Oncology | June 02, 2021
June 2, 2021 — A breast cancer therapy that requires just one shot of radiotherapy is as effective as traditional rad
Swiftness is essential when treating lung cancer, the second most common type of cancer in the U.S. and the country's leading cause of cancer deaths.

Getty Images

News | Lung Imaging | June 01, 2021
June 1, 2021 — Swiftness is essential when treating lung can...