News | Artificial Intelligence | January 16, 2017

Artificial Intelligence Will be Used to Improve Lung Cancer Screenings

Third annual Data Science Bowl calls on amateur and career data scientists to help improve cancer screening technology by lowering false-positive rates

January 16, 2017 — Management consulting firm Booz Allen Hamilton  and data analytics company Kaggle recently announced that the third annual Data Science Bowl will inspire data scientists and medical communities around the world to use artificial intelligence to improve lung cancer screening technology. This year’s Data Science Bowl aligns to the call of the Vice President’s “Cancer Moonshot”, announced in January 2016, to unleash the power of data to help end cancer as we know it. The 90-day Data Science Bowl competition will award winners with $1 million in prizes. The funds for the prize purse will be provided by the Laura and John Arnold Foundation.

“Cancer is an intensely personal disease for so many of us: it hits loved ones at home, colleagues at work and friends in our communities. Improving cancer screening and treatment is among the most important responsibilities we have in the next decade,” said Josh Sullivan, Ph.D., senior vice president, Booz Allen Hamilton. “Artificial intelligence and human ingenuity can be powerful in the fight against cancer. Through last year’s Data Science Bowl, hedge fund analysts who had no medical experience created an algorithm that can review heart MRI [magnetic resonance imaging] images on par with trained technicians, helping to better heart disease screening. This year, data scientists — professional and hobbyists alike — can make a difference in the lives of millions of people facing a cancer diagnosis.”

Low-dose computed tomography (CT) scans can reduce lung cancer deaths by 20 percent, as demonstrated in National Cancer Institute (NCI) sponsored screening trials. This reduction would save more lives each year than any cancer-screening test in history. However, there are significant challenges as low-dose CT scans have a high false-positive rate, creating patient anxiety and potentially leading to costly and unnecessary diagnostic work like invasive biopsies that put patients at risk for collapsed lungs and other complications. Reducing the false positive rate is a critical step in making these scans available to more patients.

Using a data set of anonymized high-resolution lung scans provided by the Cancer Imaging Program of the NCI, Data Science Bowl participants will develop artificial intelligence algorithms that accurately determine when lesions in the lungs are cancerous, and thereby dramatically decrease the false positive rate of current low-dose CT technology.

The competition receives additional sponsorship and support from a number of leading health and technology organizations, including the American College of Radiology, Amazon Web Services, NVIDIA and many others.

“The Data Science Bowl is an exciting opportunity for data scientists to work with unique data sets that they wouldn’t have access to unless conducting medical research,” said Anthony Goldbloom, CEO, Kaggle. “This year’s competition has an especially important goal. By reducing the false positive rate of low-dose CT scans, we can not only prevent thousands of inaccurate lung cancer diagnoses, but also save lives through critical early detection of cancer.”

For more information: www.datasciencebowl.com

Related Content

University Medical Center Groningen Performs First Automatic Log-based Proton Therapy Patient QA
News | Proton Therapy | June 14, 2019
IBA announced the physics team of University Medical Center Groningen (UMCG) in the Netherlands has developed and...
M*Modal and Community Health Network Partner on AI-powered Clinical Documentation
News | PACS Accessories | June 13, 2019
M*Modal announced that the company and Community Health Network (CHNw) are collaborating to transform the patient-...
iCAD Introduces ProFound AI for 2D Mammography in Europe
News | Artificial Intelligence | June 13, 2019
iCAD Inc. announced the launch of ProFound AI for 2D Mammography in Europe. This software is the latest addition to...
A static image drawn from a stack of brain MR images may illustrate the results of a study. But a GIF (or MP4 movie), created by the Cinebot plug-in, can scroll through that stack, providing teaching moments for residents and fellows at Georgetown University

A static image drawn from a stack of brain MR images may illustrate the results of a study. But a GIF (or MP4 movie), created by the Cinebot plug-in, can scroll through that stack, providing teaching moments for residents and fellows at Georgetown University. Image courtesy of MedStar Georgetown University Hospital

Feature | Information Technology | June 13, 2019 | By Greg Freiherr
Editor’s note: This article is the third in a content series by Greg Freiherr covering the Society for Imaging In
Studycast PACS Adds Two-factor Authentication to Improve Data Privacy and Security
News | Cybersecurity | June 12, 2019
Core Sound Imaging announced the addition of two-factor authentication (2FA) to the security measures available for the...
The Current Direction of Healthcare Reform Explained by CMS Administrator Seema Verma
News | Radiology Business | June 11, 2019
June 11, 2019 — Centers for Medicare and Medicaid Services (CMS) Administrator Seema Verma addressed the American Med
Aidoc Earns FDA Approval for AI for C-spine Fractures
Technology | Artificial Intelligence | June 11, 2019
Radiology artificial intelligence (AI) provider Aidoc announced the U.S. Food and Drug Administration (FDA) has cleared...
Medivis SurgicalAR Gets FDA Clearance
Technology | Virtual and Augmented Reality | June 10, 2019
Medivis announced that its augmented reality (AR) technology platform for surgical applications, SurgicalAR, has...
Glassbeam Announces New Clinsights Application Suite for Healthcare Provider Market
Technology | Analytics Software | June 10, 2019
Glassbeam launched Clinsights, a new revitalized application suite powered by artificial intelligence/machine learning...
The DeepAAA algorithm, developed at the MGH & BWH Center for Clinical Data Science, accurately detected and measured an abdominal aortic aneurysm (AAA) in a CT image even though appearance of the AAA was complicated by a blood clot

The DeepAAA algorithm, developed at the MGH & BWH Center for Clinical Data Science, accurately detected and measured an abdominal aortic aneurysm (AAA) in a CT image even though appearance of the AAA was complicated by a blood clot. (The algorithm drew a green circle around the aneurysm.) Image courtesy of Varun Buch, MGH & BWH Center for Clinical Data Science

Feature | Artificial Intelligence | June 10, 2019 | By Greg Freiherr
Editor’s note: This article is the second in a content series by Greg Freiherr covering the ...