News | Artificial Intelligence | July 17, 2018

Artificial Intelligence Provides Faster, Clearer MRI Scans

Machine learning software produces better signal and less noise than conventional MRI techniques

Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

July 17, 2018 — A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has developed an advanced computing technique for rapidly and cost effectively improving the quality of biomedical imaging. The technology, called AUTOMAP, uses machine learning and software, referred to as neural networks — inspired by the brain’s ability to process information and perceive or make choices. AUTOMAP finds the best computational strategies to produce clear, accurate images for various types of medical scans.

In their study in the March 21, 2018, issue of Nature, the researchers from Massachusetts General Hospital (MGH) Martinos Center for Biomedical Imaging and Harvard University found that the AUTOMAP system could produce brain magnetic resonance imaging (MRI) images with better signal and less noise than conventional MRI techniques. Achieving a good signal-to-noise ratio is a key factor in generating a quality MRI scan.

MRI uses a magnetic field and radio waves to create detailed images of tissues inside the body. Noise from either electronic sources or from tissues in the body are detrimental to image quality, so imagers look for ways to lessen its effect.

“The signal-to-noise ratio improvements we gain from this artificial intelligence-based method directly accelerates image acquisition on low-field MRI,” said lead author Bo Zhu, Ph.D., postdoctoral research fellow in radiology at Harvard Medical School and in physics at the MGH Martinos Center. NIBIB has supported Zhu’s postdoctoral research on this project. He added that the AUTOMAP neural network will be compatible with novel image acquisition strategies and unconventional hardware designs.

AUTOMAP churns through — and learns from — data from existing images and applies mathematical approaches in reconstructing new ones. The team used a set of 50,000 MRI brain scans from the NIH-supported Human Connectome Project to train the AUTOMAP system to reconstruct images in their study, successfully demonstrating improvements in reducing noise and reconstruction artifacts over existing methods.

AUTOMAP achieves almost instantaneous image reconstruction, according to senior author Matt Rosen, Ph.D., director of the Low-field MRI and Hyperpolarized Media Laboratory and co-director of the Center for Machine Learning at the MGH Martinos Center. The reason for the rapid processing speed — just tens of milliseconds — is that the neural network has no cycles or loops, rather is a feedforward system.

“Some types of scans currently require time-consuming computational processing to reconstruct the images,” Rosen said. “In those cases, immediate feedback is not available during initial imaging, and a repeat study may be required to better identify a suspected abnormality. AUTOMAP would provide instant image reconstruction to inform the decision-making process during scanning and could prevent the need for additional patient visits.”

“This technology could become a game changer, as mainstream approaches to improving the signal-to-noise ratio rely heavily on expensive MRI hardware or on prolonged scan times,” said Shumin Wang, Ph.D., director of the NIBIB program in magnetic resonance imaging. “It may also be advantageous for other significant MRI applications that have been plagued by low signal-to-noise ratio for decades, such as multi-nuclear spectroscopy.”

For more information: www.nature.com/nature

Reference

Zhu B., Liu J.Z., Cauley S.F., et al. "Image reconstruction by domain-transform manifold learning." Nature, March 21, 2018. https://doi.org/10.1038/nature25988

Related Content

SimonMed Deploys ClearRead CT Enterprise Wide
News | Computer-Aided Detection Software | September 17, 2018
September 17, 2018 — National outpatient physician radiology group SimonMed Imaging has selected Riverain Technologie
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | September 07, 2018 | By Sabine Sartoretti, M.D.
As soon as the Compressed SENSE technology became available to the MRI team at Kantonsspital Winterthur (Switzerland),...

Image courtesy of Philips Healthcare

Feature | Magnetic Resonance Imaging (MRI) | September 06, 2018 | By Melinda Taschetta-Millane
According to the Prescient & Strategic Intelligence report, “Global Magnetic Resonance Imaging (MRI) Market Size,...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
GlobalData: Amazon Poised to Make Huge Strides in Healthcare
News | Radiology Business | August 31, 2018
A new report from data and analytics company GlobalData suggests that Amazon is poised to make huge strides in...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
Overlay Init