News | Artificial Intelligence | July 17, 2018

Artificial Intelligence Provides Faster, Clearer MRI Scans

Machine learning software produces better signal and less noise than conventional MRI techniques

Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

July 17, 2018 — A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has developed an advanced computing technique for rapidly and cost effectively improving the quality of biomedical imaging. The technology, called AUTOMAP, uses machine learning and software, referred to as neural networks — inspired by the brain’s ability to process information and perceive or make choices. AUTOMAP finds the best computational strategies to produce clear, accurate images for various types of medical scans.

In their study in the March 21, 2018, issue of Nature, the researchers from Massachusetts General Hospital (MGH) Martinos Center for Biomedical Imaging and Harvard University found that the AUTOMAP system could produce brain magnetic resonance imaging (MRI) images with better signal and less noise than conventional MRI techniques. Achieving a good signal-to-noise ratio is a key factor in generating a quality MRI scan.

MRI uses a magnetic field and radio waves to create detailed images of tissues inside the body. Noise from either electronic sources or from tissues in the body are detrimental to image quality, so imagers look for ways to lessen its effect.

“The signal-to-noise ratio improvements we gain from this artificial intelligence-based method directly accelerates image acquisition on low-field MRI,” said lead author Bo Zhu, Ph.D., postdoctoral research fellow in radiology at Harvard Medical School and in physics at the MGH Martinos Center. NIBIB has supported Zhu’s postdoctoral research on this project. He added that the AUTOMAP neural network will be compatible with novel image acquisition strategies and unconventional hardware designs.

AUTOMAP churns through — and learns from — data from existing images and applies mathematical approaches in reconstructing new ones. The team used a set of 50,000 MRI brain scans from the NIH-supported Human Connectome Project to train the AUTOMAP system to reconstruct images in their study, successfully demonstrating improvements in reducing noise and reconstruction artifacts over existing methods.

AUTOMAP achieves almost instantaneous image reconstruction, according to senior author Matt Rosen, Ph.D., director of the Low-field MRI and Hyperpolarized Media Laboratory and co-director of the Center for Machine Learning at the MGH Martinos Center. The reason for the rapid processing speed — just tens of milliseconds — is that the neural network has no cycles or loops, rather is a feedforward system.

“Some types of scans currently require time-consuming computational processing to reconstruct the images,” Rosen said. “In those cases, immediate feedback is not available during initial imaging, and a repeat study may be required to better identify a suspected abnormality. AUTOMAP would provide instant image reconstruction to inform the decision-making process during scanning and could prevent the need for additional patient visits.”

“This technology could become a game changer, as mainstream approaches to improving the signal-to-noise ratio rely heavily on expensive MRI hardware or on prolonged scan times,” said Shumin Wang, Ph.D., director of the NIBIB program in magnetic resonance imaging. “It may also be advantageous for other significant MRI applications that have been plagued by low signal-to-noise ratio for decades, such as multi-nuclear spectroscopy.”

For more information: www.nature.com/nature

Reference

Zhu B., Liu J.Z., Cauley S.F., et al. "Image reconstruction by domain-transform manifold learning." Nature, March 21, 2018. https://doi.org/10.1038/nature25988

Related Content

John Carrino, M.D., M.Ph., presents “Challenges and Opportunities for Radiology to Prove Value in Alternative Payment Models” at AHRA 2019

John Carrino, M.D., M.Ph., presents “Challenges and Opportunities for Radiology to Prove Value in Alternative Payment Models” at AHRA 2019. Photo by Greg Freiherr

Feature | Radiology Business | July 22, 2019 | By Greg Freiherr
Efforts to reform healthcare are booming, b
IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017.

IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least one year prior to the mammogram. The algorithm was trained on 9,611 mammograms. Image courtesy of Radiology.

Feature | Artificial Intelligence | July 19, 2019 | Michal Chorev
Breast cancer is the global leading cause of cancer-related deaths in women, and the most commonly diagnosed cancer...
Paragon Biosciences Launches Qlarity Imaging to Advance FDA-cleared AI Breast Cancer Diagnosis System

Qlarity Imaging’s software is used to assist radiologists in the assessment and characterization of breast lesions. Imaging features are synthesized by an artificial intelligence algorithm into a single value, the QI score, which is analyzed relative to a database of reference abnormalities with known ground truth. Image courtesy of Business Wire.

Technology | Artificial Intelligence | July 18, 2019
Paragon Biosciences LLC announced the launch of its seventh portfolio company, Qlarity Imaging LLC, which was founded...
Two brain metastases from primary lung cancer are contrast enhanced in the brain of a 61-year-old male. Speakers at AHRA 2019 will state that ProHance and other macrocyclic MR agents present a very low risk to patients. Images courtesy of Bracco

Two brain metastases from primary lung cancer are contrast enhanced in the brain of a 61-year-old male. Speakers at AHRA 2019 will state that ProHance and other macrocyclic MR agents present a very low risk to patients. Images courtesy of Bracco

Feature | Contrast Media | July 18, 2019 | By Greg Freiherr
Macrocyclic contrast agents have the best safety profile of all the magnetic resonance (MR) contrast media that are n
AAPM 2019 Features More Than 40 Presentations on ViewRay's MRIdian MRI-guided Radiotherapy
News | Image Guided Radiation Therapy (IGRT) | July 16, 2019
ViewRay Inc. announced that the company's MRIdian System is the focus of more than 40 abstracts selected by the...
FDA Approves Bayer's Gadavist Contrast for Cardiac MRI in Adult Coronary Artery Disease Patients
Technology | Contrast Media | July 15, 2019
The U.S. Food and Drug Administration (FDA) has approved Gadavist injection for use in cardiac magnetic resonance...
Graphic courtesy Pixabay

Graphic courtesy Pixabay

Feature | Artificial Intelligence | July 15, 2019 | By Greg Freiherr
Siemens has long focused on automation as a way to make diagnostic equipment faster and more efficient.