News | Artificial Intelligence | December 11, 2019

Artificial Intelligence Boosts MRI Detection of ADHD

This deep learning approach could also have applications for other neurological conditions, according to researchers

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI.

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI. Graphic courtesy of the Radiological Society of North America.

December 11, 2019 — Deep learning, a type of artificial intelligence, can boost the power of magnetic resonance imaging (MRI) in predicting attention deficit hyperactivity disorder (ADHD), according to a study published in Radiology: Artificial Intelligence. Researchers said the approach could also have applications for other neurological conditions.

The human brain is a complex set of networks. Advances in functional MRI, a type of imaging that measures brain activity by detecting changes in blood flow, have helped with the mapping of connections within and between brain networks. This comprehensive brain map is referred to as the connectome.

Increasingly, the connectome is regarded as key to understanding brain disorders like ADHD, a condition that makes it difficult for a person to pay attention and control restless behavior.

According to the National Survey of Children's Health, approximately 9.4 percent of U.S. children, ages 2 to 17 years (6.1 million) in 2016 have been diagnosed with ADHD. The disorder cannot yet be definitively diagnosed in an individual child with a single test or medical imaging exam. Instead, ADHD diagnosis is based on a series of symptoms and behavior-based tests.

Brain MRI has a potential role in diagnosis, as research suggests that ADHD results from some type of breakdown or disruption in the connectome. The connectome is constructed from spatial regions across the MR image known as parcellations. Brain parcellations can be defined based on anatomical criteria, functional criteria, or both. The brain can be studied at different scales based on different brain parcellations.

Prior studies have focused on the so-called single-scale approach, where the connectome is constructed based on only one parcellation. For the new study, researchers from the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center took a more comprehensive view. They developed a multi-scale method, which used multiple connectome maps based on multiple parcellations.

To build the deep learning model, the researchers used data from the NeuroBureau ADHD-200 dataset. The model used the multi-scale brain connectome data from the project's 973 participants along with relevant personal characteristics, such as gender and IQ.

The multi-scale approach improved ADHD detection performance significantly over the use of a single-scale method.

"Our results emphasize the predictive power of the brain connectome," said study senior author Lili He, Ph.D., from the Cincinnati Children's Hospital Medical Center. "The constructed brain functional connectome that spans multiple scales provides supplementary information for the depicting of networks across the entire brain."

By improving diagnostic accuracy, deep-learning-aided MRI-based diagnosis could be critical in implementing early interventions for ADHD patients. Approximately 5 percent of American pre-school and school-aged children have been diagnosed with ADHD. These children and adolescents face a high risk of failing in academic study and building social relationships, which can result in financial hardship for families and create a tremendous burden on society.

The approach also has potential beyond ADHD, according to He.

"This model can be generalized to other neurological deficiencies," she said. "We already use it to predict cognitive deficiency in pre-term infants. We scan them soon after birth to predict neurodevelopmental outcomes at two years of age."

In the future, the researchers expect to see the deep learning model improve as it is exposed to larger neuroimaging datasets. They also hope to better understand the specific breakdowns or disruptions in the connectome identified by the model that are associated with ADHD.

For more information: www.RadiologyInfo.org

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 A brief article from Henry Ford Health System in Detroit, published today in Radiology, reports on the first presumptive case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy.

A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Image courtesy of the Radiological Society of North America (RSNA)

News | Coronavirus (COVID-19) | March 31, 2020
March 31, 2020 — A brief article fr
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 The Chinese start-up company Infervision launches its AI-based solution InferRead CT Lung Covid-19 also in Europe
News | Artificial Intelligence | March 31, 2020
March 31, 2020 — Lung infections generated by the coronavirus can be detected in...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Doctor in our hospital is using this intelligent system for accurate diagnosis

Doctor in our hospital is using this intelligent system for accurate diagnosis. (Photo: Business Wire)

News | Artificial Intelligence | March 31, 2020
March 31, 2020 — The Intelligent Evalua...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 behold.ai has developed the artificial intelligence-based red dot algorithm which can identify within 30 seconds abnormalities in chest X-rays. Wellbeing Software operates Cris, a widely used UK radiology Information System (RIS), which is installed in over 700 locations
News | Artificial Intelligence | March 31, 2020
March 31, 2020 — Two British companies at the leading edge of medical imaging technology are working together on a pl
AI tool predicts which patients newly infected with COVID-19 will eventually develop severe respiratory disease #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Artificial Intelligence | March 31, 2020
March 31, 2020 — An artificial intelligence tool accurately predicted which patients newly infected with the...
RSNA's open data repository will compile images and correlative data to create a comprehensive source for COVID-19 research and education efforts #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Coronavirus (COVID-19) | March 30, 2020
March 30, 2020 — The medical imaging community around the world is uniting to help address the...
A physician working in a coronavirus care center nearby Daegu, South Korea, is using Lunit INSIGHT CXR to interpret chest X-ray image of a coronavirus patient. #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

A physician working in a coronavirus care center nearby Daegu, South Korea, is using Lunit INSIGHT CXR to interpret chest X-ray image of a coronavirus patient. Photo by Seoul National University Hospital

News | Artificial Intelligence | March 30, 2020
March 30, 2020 — Lunit, a medical AI software company that dev