News | RSNA | December 24, 2019

Alzheimer’s Disease AI Research Receives RSNA Margulis Award

The Radiological Society of North America (RSNA) presented its eighth Alexander R. Margulis Award for Scientific Excellence to Jae Ho Sohn, M.D., from the Radiology & Biomedical Imaging Department at the University of California in San Francisco (UCSF)

Jae Ho Sohn, M.D.

December 24, 2019 — The Radiological Society of North America (RSNA) presented its eighth Alexander R. Margulis Award for Scientific Excellence to Jae Ho Sohn, M.D., from the Radiology & Biomedical Imaging Department at the University of California in San Francisco (UCSF), for the article, “A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain,” published online in November 2018. The groundbreaking study shows the significant potential of artificial intelligence (AI) as a diagnostic tool in Alzheimer’s disease (AD). Sohn was presented with the award today at RSNA 2019 in Chicago.

Named for Alexander R. Margulis, M.D., a distinguished investigator and inspiring visionary in the science of radiology, this annual award recognizes the best original scientific article published in RSNA’s peer-reviewed journal Radiology.

A radiology resident with an engineering background,  Sohn co-authored the study with the goal of developing a deep learning algorithm to detect patterns on complex brain images to identify AD as early as possible.

“Alzheimer’s is a costly, devastating disease and by the time a clinical diagnosis is made, it’s often too late,” said Sohn, who leads the UCSF Big Data in Radiology (BDRAD) multidisciplinary team of physicians and engineers focusing on radiological data science. “We hypothesized we could use AI as an early prediction tool for Alzheimer’s in conjunction with other biochemical and imaging tests. If we can detect the disease early enough, physicians have a chance of slowing it down or halting it through therapeutic intervention.”

The results far exceeded Sohn’s expectations. Using 18F fluorodeoxyglucose (FDG) PET scans to train a deep learning algorithm, Sohn and colleagues were able to detect early-stage AD about six years before it was clinically diagnosed.

“This research is groundbreaking,” said Radiology editor David A. Bluemke, M.D. “It demonstrates the potential for state-of-the-art AI technology to help interpret the remarkably complex patterns on FDG PET imaging in patients with Alzheimer's disease. Even more hopeful for Alzheimer’s patients, this same line of research will also apply to more specific PET tracers for detecting the disease.”

The study began when UCSF colleagues Benjamin Franc, M.D., a nuclear medicine specialist, and Youngho Seo, Ph.D., a nuclear medicine physicist, approached Sohn and undergraduate student Yiming Ding about developing an algorithm to interpret FDG PET brain scans. Research has linked the disease process to changes in metabolism, which can be difficult to recognize. PET scans can measure the uptake of FDG in brain cells, indicating metabolic activity.

The research team used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a major multi-site study focused on clinical trials to improve prevention and treatment of this disease. The ADNI dataset included more than 2,100 FDG PET brain images from 1,002 patients. The researchers trained the deep learning algorithm on 90 percent of the dataset and then tested it on the remaining 10 percent of the dataset.

Finally, they tested the algorithm on an independent set of 40 FDG PET imaging exams from 40 patients that it had never studied. Results showed that algorithm achieved 82 percent specificity and 100 percent sensitivity at detecting the disease an average of more than six years prior to the final diagnosis.

“I was surprised at how high the numbers were, but I already knew AI was going to be more effective than humans,” Sohn said. “The very special nature of AI detects very global, subtle changes that the human eye cannot.”

Sohn, who plans to continue researching the vast capabilities of AI in radiology, was extremely honored to be chosen for Margulis Award, which he believes will open doors for future research.

“I was completely surprised and shocked to receive the award,” Sohn said. “This recognition will pave the way for my research career and will allow me to connect with other researchers doing important work.”

Sohn stresses that further validation with larger and prospective external tests must be performed before the Alzheimer’s detection algorithm can be used clinically. However, he believes that researchers united in the fight against Alzheimer’s are on the brink of a significant breakthrough.

“I really think we are at an inflection point with Alzheimer’s disease,” Sohn said. “I believe we will see major progress in the next decade or two.”

Access the study at https://pubs.rsna.org/doi/10.1148/radiol.2018180958.  

Related content:

Clinical Implementation of Artificial Intelligence in Radiology

Related Content

Lung and respiratory health pioneer paves way for more precise care of complex respiratory conditions
News | Artificial Intelligence | September 25, 2020
September 25, 2020 — VIDA Diagnostics, Inc. announced that it has received 510(k) clearance from the Food and Drug Ad
EchoGo Pro automates cardiac ultrasound measurements for heart functions, but also empower physicians to predict the occurrence of coronary artery disease (CAD).

EchoGo Pro automates cardiac ultrasound measurements for heart functions, but also empower physicians to predict the occurrence of coronary artery disease (CAD).

News | Cardiovascular Ultrasound | September 25, 2020
September 25, 2020 — Based on its recent analysis of the global...
RADLogics AI-Powered solution in use: chest X-ray of COVID-19 positive case with heatmap key image.

RADLogics AI-Powered solution in use: chest X-ray of COVID-19 positive case with heatmap key image.

News | Artificial Intelligence | September 23, 2020
September 23, 2020 — RADLogics
The cartilage in this MRI scan of a knee is colorized to show greater contrast between shades of gray.

The cartilage in this MRI scan of a knee is colorized to show greater contrast between shades of gray. Image courtesy of Kundu et al. (2020) PNAS

News | Artificial Intelligence | September 22, 2020
September 22, 2020 — Researchers at the University of Pitts...
New research from King's College London has found that COVID-19 may be diagnosed on the same emergency scans intended to diagnose stroke.

Canon Medical Systems

News | Cardiac Imaging | September 22, 2020
September 22, 2020 — New research from King's College London has
Philips Azurion Lung Edition supports high precision diagnosis and minimally invasive therapy in one room
News | Lung Imaging | September 21, 2020
September 21, 2020 — Philips introduced...
According to a new report published by P&S Intelligence, the global radiotherapy market is expected to expand from $7.2M in 2019 to $17M by 2030.

Image courtesy of Accuray

Feature | Radiation Therapy | September 21, 2020 | By Melinda Taschetta-Millane
According to a...