Technology | June 10, 2015

AG Mednet Introduces Longitudinal Analysis for Submission Quality & Compliance Module

New functionality automates consistency and validity of imaging data throughout a clinical trial

June 10, 2015 - AG Mednet announced a new automated software that checks data across subject visits, at the source. AG Mednet Longitudinal Analysis, now included in the AG Mednet Submission Quality & Compliance (SQC) trial management system, makes determinations about the consistency and validity of imaging data as a trial progresses.

The software improves the quality and speed of clinical trials by automating imaging data collection and trial protocols. This new functionality ensures images are consistently performed at the right time with the right equipment to the right specifications.

AG Mednet's SQC software immediately detects errors that result in query stoppages and allows users to verify information, automatically update support systems including electronic data capture (EDC), and dramatically reduce the amount of queries returned for correction or re-scanning.

The introduction of AG Mednet Longitudinal Analysis adds these key features:

  • Tracking and recording image thickness: AG Mednet tracks image thickness so radiologists can easily check if the next time point slice thickness is the same as the one previously acquired. This automated consistency of image slice thickness ensures adherence to trial protocols;
  • Automated calendaring for time-dependent trials: For trials that require patient imaging to occur at specific intervals, AG Mednet Longitudinal Analysis allows professionals to determine appropriate scanning timing at the source; and
  • Automated tracking for imaging equipment: The software tracks the specific piece of equipment used to ensure images are consistent and checks if the same scanner and software release is used for all patients.

For more information: www.agmednet.com

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Company emphasizes faster, more advanced CTs, making imaging easier for COVID-19 patients
News | Computed Tomography (CT) | April 01, 2020
April 1, 2020 — United Imaging, a global leader in advanc
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Doctor in our hospital is using this intelligent system for accurate diagnosis

Doctor in our hospital is using this intelligent system for accurate diagnosis. (Photo: Business Wire)

News | Artificial Intelligence | March 31, 2020
March 31, 2020 — The Intelligent Evalua...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Coronavirus (COVID-19) | March 31, 2020
March 31, 2020 — In a...
AI tool predicts which patients newly infected with COVID-19 will eventually develop severe respiratory disease #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Artificial Intelligence | March 31, 2020
March 31, 2020 — An artificial intelligence tool accurately predicted which patients newly infected with the...
RSNA's open data repository will compile images and correlative data to create a comprehensive source for COVID-19 research and education efforts #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Coronavirus (COVID-19) | March 30, 2020
March 30, 2020 — The medical imaging community around the world is uniting to help address the...
Phase III response to the COVID-19 public health emergency (PHE) CARES Act signed into law #CARESAct #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
Feature | Coronavirus (COVID-19) | March 28, 2020 | By Melinda Taschetta-Millane
On March 27, the House of Representatives approved a historic $2
AI vendor Infervision's InferRead CT Pneumonia software uses artificial intelligence-assisted diagnosis to improve the overall efficiency of the radiology department. It is being developed in China as a high sensitivity detection aid for novel coronavirus pneumonia (COVID-19). #COVID19 #coronavirus #SARScov2

AI vendor Infervision's InferRead CT Pneumonia software uses artificial intelligence-assisted diagnosis to improve the overall efficiency of the radiology department. It is being developed in China as a high sensitivity detection aid for novel coronavirus pneumonia (COVID-19).

Feature | Coronavirus (COVID-19) | March 27, 2020 | Jilian Liu, M.D., HIMSS Greater China
An older couple walked into the Hubei Provincial Hospital of Integrated Chinese and Western Medicine near their neigh
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Typical CT imaging features for COVID-19. Unenhanced, thin-section axial images of the lungs in a 52-year-old man with a positive RT-PCR (A-D) show bilateral, multifocal rounded (asterisks) and peripheral GGO (arrows) with superimposed interlobular septal thickening and visible intralobular lines (“crazy-paving”). Routine screening CT for diagnosis or exclusion of COVID-19 is currently not recommended by most professional organizations or the US Centers for Disease Control and Prevention. Image courtesy of RSNA

News | Coronavirus (COVID-19) | March 26, 2020
March 26, 2020 — The Radiological Society of North America (RSNA