News | PET Imaging | April 05, 2017

Advanced FDG-PET Image Analysis Identifies Cell Mutations in Cancer Patients

Researchers hope results will lead to development of imaging biomarker to non-invasively identify mutation status and in turn allow more patient-specific treatment approaches

FDG-PET, cell mutations, lung cancer patients, non-small cell lung cancer, NSCLC, Journal of Nuclear Medicine study

From left to right are patients with EGFR mutation, KRAS mutation, and EGFR– and KRAS– tumors, respectively. Stage I and III tumors are shown in the top and bottom rows, respectively. Arrows indicate the locations of the lung tumors. Credit: Stephen S.F. Yip, Ph.D., and Hugo Aerts, Ph.D., Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston; John Kim, M.D., University of Michigan Health System, Ann Arbor, Mich.

April 5, 2017 — Researchers have used positron emission tomography (PET) to successfully identify genetic cell mutations that can cause lung cancer. The research, published in the featured article of the April 2017 issue of The Journal of Nuclear Medicine, shows that an advanced image analysis technique, radiomics, can non-invasively identify underlying cell mutations in patients with non-small cell lung cancer (NSCLC).

More people in the United States die from lung cancer than from any other type of cancer, and NSCLC is the most common form.

The characteristics of metabolic tumors have been quantified by PET radiomics, but little is known about the relationship between these characteristics, or phenotypes, and the underlying mutations that cause them. This information is key to precision medicine—selecting the therapy that will work best for a particular patient.

“To our knowledge, this is the first study to investigate the relationship between somatic mutations and the metabolic phenotypes, which may provide valuable information for developing non-invasive imaging biomarkers for determining mutation status,” explained Stephen Yip, Ph.D., Harvard Medical School. “Identifying mutation status in NSCLC patients is an important component of selecting an optimal treatment plan for the patient. The current standard of care uses molecular testing based on biopsies of tumor tissue or surgical resection to identify mutation status. Molecular testing, however, can be limited by invasive procedures and long processing times. In addition, tissue samples are not always readily available.”

For the study, 348 NSCLC patients underwent diagnostic F-18-fluorodoxyglucose PET (F-18-FDG PET) scans and were tested for genetic mutations. Of those patients, 13 percent (44/348) and 28 percent (96/348) were found to harbor an epidermal growth factor receptor (EGFR) or Kristen rat sarcoma viral (KRAS) mutations, respectively. The analysis evaluated 21 imaging features: 19 independent radiomic features quantifying phenotypic traits and 2 conventional features (metabolic tumor volume and maximum standard uptake value).

The results indicate that EGFR mutations may drive different metabolic tumor phenotypes that are captured in PET images, whereas KRAS-mutated tumors do not. This proof-of-concept study sheds light on genotype-phenotype interactions using radiomics to capture and describe the phenotype.

Yip noted, “This study may thus help develop an imaging biomarker that can non-invasively and accurately identify EGFR mutation status using PET imaging to complement, but not to replace, molecular testing.”

For more information: www.jnm.snmjournals.org

Related Content

A World Health Organization (WHO) rapid advice guide on the use of chest imaging in the diagnosis and management of COVID-19 was published in the journal Radiology.

Getty Images

News | Coronavirus (COVID-19) | July 30, 2020
July 30, 2020 — A World Health Organization (WHO) rapid advice gui
Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

News | Prostate Cancer | July 28, 2020
July 28, 2020 — A study published in 
(a) A schematic of cycloidal computed tomography (not to scale, seen from top); by adding an array of beam stops in front of the detector, the setup is transformed into an edge-illumination x-ray phase-contrast imaging device. (b) A sinogram sampling grid for a rotation-only scheme. (c) A sinogram sampling grid for a cycloidal scheme. The grids are shown for one mask period and a subset of rotation angles; the combination of empty and filled circles shows the grids that would be achieved through fine latera

(a) A schematic of cycloidal computed tomography (not to scale, seen from top); by adding an array of beam stops in front of the detector, the setup is transformed into an edge-illumination x-ray phase-contrast imaging device. (b) A sinogram sampling grid for a rotation-only scheme. (c) A sinogram sampling grid for a cycloidal scheme. The grids are shown for one mask period and a subset of rotation angles; the combination of empty and filled circles shows the grids that would be achieved through fine lateral sampling (requiring dithering); the filled circles show the data that are sampled without dithering.

News | Computed Tomography (CT) | July 24, 2020
July 24, 2020 — A computed tomography (CT) sca
A and B, Lung ultrasound images obtained with convex (A) and linear (B) probes. Multiple confluent B-lines (arrows), patchy pulmonary consolidation (asterisk, B), and thickened pleural line (between arrowheads, A) are visualized. C, Chest CT image shows reticular and interlobular septal thickening and patchy, focal opacities associated with architectural distortion. This patient was classified in critical group and was assigned to severe group for statistical analysis.

A and B, Lung ultrasound images obtained with convex (A) and linear (B) probes. Multiple confluent B-lines (arrows), patchy pulmonary consolidation (asterisk, B), and thickened pleural line (between arrowheads, A) are visualized. C, Chest CT image shows reticular and interlobular septal thickening and patchy, focal opacities associated with architectural distortion. This patient was classified in critical group and was assigned to severe group for statistical analysis.

News | Coronavirus (COVID-19) | July 23, 2020
July 23, 2020 — 
In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 

News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor
July 22, 2020 — One of the first studies has been published that looks at the use of...
Medical professionals around the world have been feeding lung X-rays into a database since the beginning of the pandemic

Pre-processing results. Image courtesy of Applied Sciences.

News | Coronavirus (COVID-19) | July 22, 2020
July 22, 2020 — Researchers from the Departme
Pioneering study, which included humans, led by Tel Aviv University researchers contradicts widespread conjectures
News | Magnetic Resonance Imaging (MRI) | July 21, 2020
July 21, 2020 — Researchers at Tel Aviv University, led by Prof.

Fig. 1 The basis of high-sensitivity SPION imaging at ultra-low magnetic fields.

(A) Magnetization of 25-nm SPIONs (green), gadolinium CA (Gd-DTPA/Magnevist, blue), and water (red) as a function of magnetic field strength (B0). (B) Magnetization as a function of magnetic field strength (B0) in the ULF (<10 mT) regime for the materials shown in (A). Superparamagnetic materials, such as SPIONs, are highly magnetized even at ULF. Paramagnetic materials, such as CAs based on gadolinium, and body tissues (which typically have diamagnetic susceptibilities close to water) have absolute magnetizations that increase linearly with field strength. Curves in (A) and (B) were reproduced from data in (3253) and reflect the magnetic moment per kilogram of compound. (C) Highly magnetized SPIONs (brown) interact with nearby 1H spins in water, shortening 1H relaxation times, and causing susceptibility-based shifts in Larmor frequency. Image courtesy of Science Advances

News | Magnetic Resonance Imaging (MRI) | July 20, 2020
July 20, 2020 — Lowering the cost of magne...