News | Medical 3-D Printing | April 06, 2016

3-D Printed Skull Model Aids Teen's Cancer Surgery

Three-dimensional printed model offered vital road map to help doctors prepare for surgery

C.S. Mott Children's Hospital, 3-D printed skull, surgery planning, University of Michigan

A 3-D model of a patient’s skull helped doctors prepare for surgery to remove a rare, high-stage tumor. Image courtesy of University of Michigan Health System.

April 6, 2016 — Doctors at the University of Michigan’s C.S. Mott Children’s Hospital recently used 3-D printing to create a replica of a 15-year-old patient’s skull to determine how to remove a rare type of tumor.

What started as a stuffy-nose and mild cold symptoms for Parker Turchan led to a far more serious diagnosis: a tumor in his nose and sinuses that extended through his skull near his brain.

“He had always been a healthy kid, so we never imagined he had a tumor,” said Parker’s father, Karl. “We didn’t even know you could get a tumor in the back of your nose.”

The Portage, Mich. high-school sophomore was referred to Mott, where doctors determined the tumor extended so deep that it was beyond what regular endoscopy could see.

The team needed to get the best representation of the tumor’s extent to ensure that their surgical approach could successfully remove the entire mass.

“Parker had an uncommon, large, high-stage tumor in a very challenging area,” said Mott pediatric head and neck surgeon David Zopf, M.D. “The tumor’s location and size had me question whether a minimally invasive approach would allow us to remove the tumor completely.”

To help answer that question, teams at Mott crafted a 3-D replica of Parker’s skull.

The model, made of polylactic acid, helped simulate the forthcoming operation on Parker by giving U-M surgeons “an exact replica of his craniofacial anatomy and a way to essentially touch the ‘tumor’ with our hands ahead of time,” Zopf said.

Just as important, it also allowed the team to counsel Parker and his family by offering them a look at what lurked within — and, with the test run successfully complete, what would lie ahead.

The rare and aggressive tumor in Parker’s nose is known as juvenile nasopharyngeal angiofibroma, a mass that grows in the back of the nasal cavity and predominantly affects young male teens. Mott sees a handful of cases each year.

In Parker’s case, the tumor had two large parts: one roughly the size of an egg and the other the size of a kiwi. The mass sat right in the center of the craniofacial skeleton below the brain and next to the nerves that control eye movement and vision.

“We were obviously concerned about the risks involved in this kind of procedure, which we knew could lead to a lot of blood loss and was sensitive because it was so close to the nerves in his face,” said Karl, who nonetheless praised the 3-D methodology used to aid his son.

“It was pretty impressive to see the model of Parker’s skull ahead of the surgery. We had no idea this was even possible.”

Zopf, working with Erin McKean, M.D., a U-M skull base surgeon, was able to completely remove the large tumor. Kyle VanKoevering, M.D., and Sajad Arabnejad, M.D., aided in model preparation.

Through preoperative embolization, the blood supply to the tumor was blocked off the day before surgery to decrease blood loss. A large portion of the tumor was then detached endoscopically and removed through the mouth. The remaining mass under the brain was taken out through the nose.

Doctors took pictures of Parker’s anatomy during the surgery and, later, compared it to pictures from the model. They were nearly identical.

"Words alone can't express how thankful we are for Parker's talented team of surgeons at Mott,” said his mother, Heidi. “Parker is back to his old self again.”

Although medical application of the technology continues to gain attention, it isn’t entirely new. Zopf and Mott teams have used 3-D printing for almost five years.

3-D printed splints made at U-M have helped save the lives of babies with severe tracheobronchomalacia, which causes the windpipe to periodically collapse and prevents normal breathing. Mott has also used 3-D printing on a fetus to plan for a potentially complicated birth.

“We are finding more and more uses for 3-D printing in medicine,” Zopf said. “It is proving to be a powerful tool that will allow for enhanced patient care.”

Based on prior success in patients such as Parker and a continued collaborative effort, it’s a concept that appears poised to thrive.

“Because of the team approach we’ve established at the University of Michigan between otolaryngology and biomedical engineering, the printed models can be designed and rapidly produced at a very low cost,” Zopf said. “Michigan is one of only a few places in the nation and world that has the capacity to do this.”

For more information: www.mottchildren.org

Related Content

Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
iSchemaView Brings RAPID Imaging Platform to Australia and New Zealand
News | Stroke | July 13, 2018
iSchemaView has signed Diagnostic Imaging Australia (DIA) to be the exclusive distributor for the RAPID cerebrovascular...
3-D Imaging and Computer Modeling Capture Breast Duct Development

An image of a developing mammary duct. Image courtesy of Andrew Ewald.

News | Breast Imaging | June 28, 2018
A team of biologists has joined up with civil engineers to create what is believed to be the first 3-D computer model...
3D Systems Announces On Demand Anatomical Modeling Service
Technology | Medical 3-D Printing | June 18, 2018
3D Systems announced availability of its new On Demand Anatomical Modeling Service. This new service provides a wide...
Technology | Orthopedic Imaging | June 13, 2018
EOS imaging announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its hipEOS...
Reduced hippocampal volume on MRI

This figure shows reduced hippocampal volume over the course of 6 years as seen on progressive volumetric analysis and also coronal MRI evaluations (arrows).Progressive volume loss in the mesial temporal lobe on MRI is a characteristic imaging feature of AD. This patient was a case of Alzheimer’s Dementia.

 

News | Neuro Imaging | June 12, 2018
According to a UCLA Medical Center study, a new technology shows the potential to help doctors better determine when...
FDA Issues Proposed Order to Reclassify Certain Radiological Medical Image Analyzers
News | Computer-Aided Detection Software | June 01, 2018
The U.S. Food and Drug Administration (FDA) is issuing a proposed order to reclassify certain radiological medical...
Researchers Use Radiomics to Overcome False Positives in Lung Cancer CT Screening
News | Advanced Visualization | May 29, 2018
A team of researchers including investigators from Mayo Clinic has identified a technology to address the problem of...
Intelerad Launches AI Initiative for Imaging Workflow Intelligence and Analytics
News | Artificial Intelligence | May 29, 2018
Intelerad Medical Systems announced the launch of its artificial intelligence (AI) initiative along with the expansion...
EnvoyAI, TeraRecon and Insignia Bringing Artificial Intelligence to U.K. Customers
Technology | Advanced Visualization | May 11, 2018
EnvoyAI announced a new integration with Insignia Medical Systems’ InSight PACS (picture archiving and communication...