News | April 25, 2014

3-D Planning and Printing Helps Personalized Surgery

Virtual Surgical Planning software tools provide surgeons with unprecedented precision and control in previously inoperable cases

Virtual Surgical Planning 3-D Planning Systems Advanced Visualization

April 25, 2014 — 3D Systems announced that its Medical Modeling Virtual Surgical Planning (VSP) technology — the combination of its production grade 3-D printing and personalized surgery tools — has enabled surgeons to conduct complex surgical procedures on newborn and infant patients with more confidence in safety and success.

VSP allows surgeons to capture a digital model of the patient directly from an magnetic resonance imaging (MRI) or computed tomography (CT) scan and work with 3DS' Medical Modeling experts to create a detailed surgical plan and then 3-D print physical models and custom surgical guides from 3DS' biocompatible stereolithography (SLA) materials. By accessing 3DS' entire personalized digital thread from perceptual devices like its TouchX haptic, VSP software tools and the guidance of its expert team of biomedical engineers, surgeons can virtually plan and physically practice critical steps of an operation before a patient ever sets foot in the operating room.

In a representative case, experts from 3DS' personalized surgery team used VSP technology to assist Oren Tepper, M.D., attending surgeon, Division of Plastic and Reconstructive Surgery, Montefiore Medical Center, New York, in planning and conducting groundbreaking surgery on a young girl, Jayla Vargas. Jayla was born with an undersized jaw that inhibited her breathing. Traditionally, in such cases, surgeons have been unable to perform the series of surgeries required to reshape an child's jaw due to the pain and risks associated while the patient is very young. However, utilizing VSP technology Tepper successfully corrected Jayla's jaw much earlier than is typical, at one month old as opposed to 6 years old, and spared her additional years of living with a tracheostomy, a surgically created opening in the windpipe to allow proper breathing.

"VSP has not only helped make surgical procedures more precise, but offers the potential to change the scope of what is surgically possible," said Tepper. "In the case of lower jaw lengthening procedures for children, the surgeon can plan the operation on the computer first, and identify any problems before getting to the operating room."

For more information www.3DSystems.com

References

1. Kohan E, Hazany S, Roosaeian J, Allam K, Head C, Wald S, Vyas R, Bradley J: Economic advantages to a distraction decision tree model for management of neonatal upper airway management. Plastic and Reconstructive Surgery, 2010 Nov;126(5):1652-64.

 

Related Content

News | Advanced Visualization | November 13, 2018
Canon Medical Systems USA and Applied Radiology will host a pair of expert-led forums in high-resolution imaging and...
Deaconess Health System Chooses Sectra as Enterprise Imaging Vendor
News | Enterprise Imaging | November 02, 2018
International medical imaging information technology (IT) and cybersecurity company Sectra will install its enterprise...
The OnSight 3D Extremity System captures weight-bearing 3D extremity exams.
Sponsored Content | Whitepapers | Advanced Visualization | October 24, 2018
The OnSight 3D Extremity System captures weight-bearing 3D extremity exams.
Enterprise imaging has been a hot topic in radiology and healthcare information technology (IT) circles for the last several years as medical image acquisition has moved beyond the exclusive purview of radiology.
Feature | Enterprise Imaging | October 03, 2018 | By Jeff Zagoudis
Enterprise imaging has been a hot topic in radiology and healthcare information technology (IT) circles for the last...
Brainlab and Magic Leap Partner in Digital Surgery
News | Advanced Visualization | September 28, 2018
September 28, 2018 — Brainlab announced a strategic development partnership with Florida-based Magic Leap, a develope
EOS Imaging Installs First Site in Mexico
News | Orthopedic Imaging | September 24, 2018
EOS imaging recently announced the first installation of an EOS system in Mexico, the largest Central American market,...
Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
iSchemaView Brings RAPID Imaging Platform to Australia and New Zealand
News | Stroke | July 13, 2018
iSchemaView has signed Diagnostic Imaging Australia (DIA) to be the exclusive distributor for the RAPID cerebrovascular...
3-D Imaging and Computer Modeling Capture Breast Duct Development

An image of a developing mammary duct. Image courtesy of Andrew Ewald.

News | Breast Imaging | June 28, 2018
A team of biologists has joined up with civil engineers to create what is believed to be the first 3-D computer model...
3D Systems Announces On Demand Anatomical Modeling Service
Technology | Medical 3-D Printing | June 18, 2018
3D Systems announced availability of its new On Demand Anatomical Modeling Service. This new service provides a wide...