Feature | Ultrasound Imaging | November 01, 2016 | By Snehal Chougule

Ultrasound Enhances Quality as Technology Advances

This article originally was featured as the introduction to the Ultrasound Systems comparison chart in the November/December 2016 issue. The chart can be found here.

ultrasound

Image courtesy of Toshiba

The past decade has witnessed significant developments in ultrasound technologies, ranging from portable devices, wireless transducers to 3-D/4-D ultrasound imaging and artificial intelligence. Researchers and scientists are endeavoring on developing technologies that simplify diagnostic procedures, improve efficiency of clinicians and enhance image quality. These research and development activities focus on improving overall quality of patient care. In addition, manufacturers are placing an emphasis on implementing automation in premium-tier systems, portable devices and point-of-care (POC) solutions. The prime focus of vendors will be on offering cost-effective devices with growing innovation and competition in the global industry. 

Ultrasound has seen increasing use due to concerns regarding overexposure to radiation by conventional systems including computed tomography (CT). The trend of using smart fusion technologies, i.e., acquiring images using a combination of ultrasound and MRI, for interventional and therapeutic applications is also gaining momentum. In its recent report on the ultrasound devices market, Allied Market Research highlighted how advancements in ultrasound technology will influence the global industry. As per the report, the market is estimated to reach $10,476 million by 2022. Following are the technological advancements shaping the ultrasonic devices industry.

3-D/4-D Ultrasound Technologies

Availability of better visualization owing to advancements in 3-D and 4-D ultrasound technologies helped gynecologists to determine congenital birth defects. The images offered by 3-D/4-D ultrasound aid in detecting defects better as compared to images delivered by 2-D ultrasound systems. So, congenital birth defects such as spina bifida, cleft palate and others are easy to detect and conduct diagnostic procedures. “Patients, of course, love 3-D pictures, but as radiologists we have to be careful that we’re not performing an ultrasound for the fun of it,” said Deborah Levine, M.D., co-chief of ultrasound and director of obstetric and gynecologic ultrasound at the Department of Radiology at Beth Israel Deaconess Medical Center, Boston. “Radiologists will perform a whole diagnostic study before ever providing that 3-D picture for the patient.”

Different tools are available in 3-D technologies, such as multiplanar display, which helps in rendering orthogonal views for fetal brain and cavities. In addition, it also helps gynecologists to view a baby’s face, hands and other features through surface rendering and determine genetic syndromes. Maximum intensity projection is another tool that assists clinicians to view structures of bone, including skull or vertebra, more distinctively, whereas thick slice scanning helps them to visualize toes, fingers and anomalies like cleft palate better. 3-D inversion mode is helpful in examining fluid-filled structures, including brain ventricles or fetal stomach.

3-D ultrasound helps in improving precision in fetal weight estimation by measuring fractional thigh volume. This, in turn, helps in assessment of prenatal nutritional status by assessment of soft tissues of fetal limbs. Wesley Lee, M.D., co-director, Texas Children’s Fetal Center, Texas Children’s Hospital Pavilion for Women, Houston, Texas, is conducting research based on this method. Emphasizing the role of 3-D ultrasound in assessment of fetal limbs, he said, “We have to develop new ways and novel approaches for determining which babies are truly malnourished. That’s why we are using fractional limb volume as part of the fetal weight estimation procedure to assess the fetus before delivery.” 

Benefits of 3-D and 4-D ultrasound technologies such as practical, easy to use, safe and shorter exam time gives ultrasound a new life and increased relevance in medical imaging. 

Artificial Intelligence Aids Ultrasound Imaging

Clinicians face issues in reproduction of images in echocardiography, as results vary based on the sonographer’s experience and techniques used. This issue was addressed by Philips Healthcare with the introduction of artificial intelligence software, Anatomically Intelligent Ultrasound (AIUS). The software collects image volume data with the help of 3-D echo and an optimal version of diagnostic views is created. Quantification measurements are computed from the 3-D dataset and clinicians can carry out assessment of diseases and explore treatment options with highly reproducible images. AIUS also helps in saving time by obtaining dimensions three to six times faster as compared to manual methods. Advances in artificial intelligence technology help clinicians in workflow enhancement.

Point-of-Care Ultrasound Solutions

Ultrasound has become ubiquitous in point-of-care (POC) solutions to determine and diagnose vascular and cardiac issues. Innovation in ultrasound devices has given rise to handheld, portable devices that are cost effective and save time for patients as well as clinicians. Philips, for example, introduced its app-based ultrasound system, Lumify. A smartphone turns into an ultrasound device by connecting a Philips transducer through a USB port and using the Lumify app. The smartphone screen works as a display and the transducer performs all the functions regarding acquisition and image reconstruction processing. Linear and phased array transducers are available in this system. 

Mindray launched its touchscreen device, TE7, which is similar in size to a tablet, in July 2015. Various exam presets, along with enhanced cardiac functions such as continuous wave Doppler, are included in this device. It enables users to pinch, drag, zoom in, zoom out and swipe the images. Another handheld system that allows users to conduct a number of different exams is iViz by Fujifilm. It supports high-resolution color flow images and has a 7-inch display touchscreen. Full bi-directional communication with the EMR is possible with the help of the vendor neutral archive (VNA) of Fujifilm. This implies that patient data can be sent and analysis can be received through few steps. Though these technologies are in their infancy, the future looks bright for portable devices offering POC solutions. The usage of these technologies and handheld devices among clinicians and gynecologists will grow over time. 

Following the emergence of technologies and inclination of manufacturers toward innovation, the ultrasound devices will improve quality of patient care, enhance productivity of clinicians and transform medical imaging.

 

Access the most current version of the ITN Ultrasound Systems Comparison Chart (www.itnonline.com/content/ultrasound-systems). This will require a login, but it is free and only takes a minute to complete the form.

Read the 2016 article “Top Trends in Cardiovascular Ultrasound.”

Read the 2016 article “Ultrasound Enhances Quality as Technology Advances.”

Watch the VIDEO: Trends in Ultrasound at RSNA 2016

 

Snehal Chougule is a healthcare technology market analyst with Portland-based Allied Market Research.

Related Content

Guerbet announced the launch of OptiProtect 3S, a new range of technical services for its injection solutions. OptiProtect 3S is designed to support imaging centers in the daily use and protection of their injection solutions.
News | Contrast Media Injectors | February 25, 2021
February 25, 2021 — Guerbet announced the launch of ...
An example of cardiac ultrasound longitudinal strain measurements on the Epsilon EchoInsight software. This can be used to assess cardiotoxicity from chemotherapy agents. 

An example of cardiac ultrasound longitudinal strain measurements on the Epsilon EchoInsight software. This can be used to assess cardiotoxicity from chemotherapy agents. 

News | Cardio-oncology | February 25, 2021
February 25, 2020 — Results of a multi-centre, international, clinical trial co-led by Peter Munk Cardiac Centre (PMC
Advanced technologies and applications such as point-of-care, pediatrics, dry-magnets, compact MRI and fusion imaging are driving global market
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Frost & Sullivan's recent analysis, Technological Advancements and Emerging Applications in t
55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned. #COVIDvaccine #COVID19

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned.

News | Breast Imaging | February 24, 2021
Detroit-based magnetic resonance imaging (MRI) technology company SpinTech, Inc. has acquired medical-imaging research and technology developer Magnetic Resonance Innovations, Inc. (MR Innovations).
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Detroit-based magnetic resonance...
Findings indicate that PPC and GG are highly predictive of overall upstaging by PSMA PET/CT for patients with high-risk prostate cancer

Image courtesy of UCLA Health

News | PET-CT | February 23, 2021
February 23, 2021 — A...
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne
Dr Sahar Saleem placing the mummy in the CT scanner

Dr. Sahar Saleem placing the mummy in the CT scanner. Image courtesy of Sahar Saleem

News | Computed Tomography (CT) | February 22, 2021
February 22, 2021 — Modern medical technology is helping scholars tell a more nuanced story about the fate of an anci
Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | February 22, 2021
February 22, 2021 — According to an...