Feature | Women's Health | March 06, 2018 | By Katherine Hall, M.D.

The Transition to 3-D Breast Imaging

Improving mammography reading efficiency and patient outcomes

Another benefit of tomosynthesis is reducing patients’ radiation exposure, which is especially important if they need additional testing.

Another benefit of tomosynthesis is reducing patients’ radiation exposure, which is especially important if they need additional testing.

Technological advances — particularly the adoption of 3-D digital breast tomosynthesis (DBT) — are making it possible for earlier, and more accurate, detection of breast cancer. However, the transition to 3-D mammography is resulting in numerous challenges and concerns. DBT produces hundreds of images, compared to just four images typically associated with conventional 2-D digital mammography. As a result, radiologists find they require significantly more time to review and interpret each exam, reducing the number of patients they can see each day and increasing fatigue, which could potentially lead to missed diagnoses.

At the Southwest Diagnostic Imaging Center in Dallas, Texas, 80,000 mammograms are conducted each year. To maintain a competitive advantage and provide optimal patient care, the center began planning a move to 3-D mammography. But in the process, it was clear the imaging center needed a way to ensure it could continue to serve as many patients annually, without overwhelming theradiologists, who would have to review exponentially more images with the new technology.

 

AI Aids in Accelerated Detection

After an extensive review of various tomosynthesis technologies, GE Healthcare’s Senographe Pristina 3-D Mammography solution was implemented. This enabled the imaging center to also take advantage of Enhanced V-Preview, an innovative concurrent-read, cancer detection solution powered by iCAD’s PowerLook Tomo Detection on the GE platform. The solution leverages artificial intelligence (AI) and deep learning tools to reduce DBT interpretation time and improve reading workflow.

The technology quickly and precisely detects regions of interest on the tomosynthesis dataset and naturally blends those regions onto a synthetic 2-D image. This process results in a single enhanced image that draws attention to potentially cancerous lesions, enabling radiologists to more efficiently and effectively review large sets of tomosynthesis images. Because it improves how quickly hundreds of images per patient can be reviewed, this concurrent-read technology supports us as radiologists with dynamic tools that allow for providing results to patients faster without compromising reading performance or increasing recalls.

Some radiologists may be skeptical about AI in medical diagnoses. They express concern that AI would replace their trained eye and expertise. However, the technology is designed to quickly identify and lead professionals to the most concerning areas that warrant further investigation. With greater use of 3-D technology, more detailed information about patients’ breasts is available and can help identify even the smallest changes year-over-year that could be a sign of a developing cancer.

Another benefit is reducing patients’ radiation exposure, which is especially important if they need to go on for additional testing. New protocols were adopted with this system and by doing so, the number of images needed is minimized, thus limiting additional radiation to patients. Additionally, by reducing false positives, it is possible to eliminate the need for patients to return for additional mammograms to rule out problems.

 

A New Approach Yields Results

Moving to DBT required radiologists to shift their mindset and modify their approach to reading mammography images. A redesigned reading protocol, moving from comparing current and prior 2-D images, made it easier to focus more on the comparison of tomosynthesis to 3-D for easier identification of potential concerns.

Even though the 3-D technology is providing massive amounts of information, which could easily throw anyone into image overload, the software helps hone in on the areas that really need to be evaluated with ease, by presenting the data in the forefront of the dataset. Since implementing the system, the imaging center’s radiologists have cut down their reading time by 25 to 50 percent, depending on the size of the breast. 

 

Find more articles and videos on breast imaging

 

Katherine Hall, M.D., co-director of mammography, east division of Radiology Associates of North Texas, is a radiologist at Southwest Diagnostic Imaging Center which is located on the campus of Presbyterian Hospital of Dallas.

Related Content

Axillary Radiotherapy and Lymph Node Surgery Yield Comparable Outcomes for Breast Cancer
News | Radiation Therapy | December 18, 2018
Early-stage breast cancer patients with cancer detected in a sentinel lymph node biopsy had comparable 10-year...
RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Massachusetts Superior Court Grants Hologic Preliminary Injunction in Trade Secrets Lawsuits
News | Mammography | December 12, 2018
December 12, 2018 — A Massachusetts Superior Court granted a preliminary injunction in lawsuits by Hologic against Ch
Videos | Mammography | December 10, 2018
Stamatia Destounis, M.D., FACR, associate professor, University of Rochester School of Medicine, and attending radiol
FDA Clears iCAD's ProFound AI for Digital Breast Tomosynthesis
Technology | Mammography | December 07, 2018
iCAD Inc. announced clearance by the U.S. Food and Drug Administration (FDA) for their latest, deep-learning, cancer...
Fujifilm Collaborates With Lunit on AI Pilot Project
News | Artificial Intelligence | December 05, 2018
Fujifilm Medical Systems USA Inc. announced a joint collaboration with Korean-based medical artificial intelligence (AI...
ScreenPoint Medical and Volpara Partner to Bring AI to Breast Imaging Clinics
News | Computer-Aided Detection Software | December 04, 2018
ScreenPoint Medical has signed a memorandum of understanding (MOU) with Volpara Health Technologies. Volpara will...
GE Healthcare Introduces Invenia ABUS 2.0
Technology | Ultrasound Women's Health | December 03, 2018
GE Healthcare recently launched the Invenia automated breast ultrasound (ABUS) 2.0 system in the United States. This...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
ScreenPoint Medical Receives FDA Clearance for Transpara Mammography AI Solution
Technology | Computer-Aided Detection Software | November 28, 2018
November 28, 2018 — ScreenPoint Medical announced it has received 510(k) clearance from the U.S.