Feature | Radiation Oncology | January 30, 2019 | By Dave Fornell

Top Technology Trends at ASTRO 2018

In radiation oncology, the application of AI can aid many different areas for research and help increase workflow

Laurent Levy, CEO of Nanobiotix, explains the use of his company’s nanoparticles to enhance the radiation sensitivity of tumor tissue to improve patient outcomes

Laurent Levy, CEO of Nanobiotix, explains the use of his company’s nanoparticles to enhance the radiation sensitivity of tumor tissue to improve patient outcomes. The metallic-based nanoparticles show up on CT scans so it can be used as a permanent fiduciary marker to track tumor response. The images show the initial tumor and enhancement areas due to the nanoparticles and the resulting outcomes following treatment. Photo by Dave Fornell

Beaumont Hospital Cancer Institute performed the first Irradiation of spot scanning proton arc therapy plan.

Beaumont Hospital Cancer Institute performed the first Irradiation of spot scanning proton arc therapy plan.

Artificial intelligence (AI) has been the hot topic discussed at all trade shows, and the 2018 American Society for Radiation Oncology (ASTRO) annual meeting was no exception.

ASTRO also had numerous sessions on the application of AI and how it may aid several areas for research and speeding workflow. Sessions included discussion for deep learning applications in treatment planning, clinical decision support, automated image-guided adaptive radiation therapy and how it can aid in genomic/radio-biologic data mining. AI is being developed to help automate treatment planning software and cut the time it takes to develop plans from hours or days, down to minutes.

In early 2018, Mirada Medical received U.S. Food and Drug Administration (FDA) 510(k) clearance for the world’s first AI-powered auto-contouring solution. The DLCExpert software is used for automatic contouring of computed tomography (CT) scans based on next-generation deep learning contouring (DLC) and is now in use in multiple academic medical centers worldwide. The vendor highlighted this technology at ASTRO 2018.

 

Improving Radiosensitivity

Radiation oncology has largely had a one-size-fits-all mentality in treating patients, but healthy cells and cancerous tumor cells can greatly vary in sensitivity and response to radiation therapy. ASTRO had numerous sessions on research efforts to better tailor therapies to each patient to cause less collateral damage to health tissues and more damage to cancer. This includes the use of radiomics (the study of small radiology image features to find commonalities to better risk stratify patients), genomics (the study of the genetic profiles for both patients and cancer cells) and liquid biopsy blood tests that capture circulating tumor cells to eliminate biopsies.

In sessions, there also was discussion on the possible use of nanoparticles to enhance radiation sensitivity of tumors, allowing each fraction to cause more damage.

 

MRI-guided Radiation Therapy

The ViewRay MRIdian is currently the only FDA-cleared magnetic resonance imaging (MRI)-guided radiation therapy system on the U.S. market, but there were two more companies with systems pending FDA review at ASTRO 2018. MRI offers excellent soft tissue detail and allows direct visualization of tumors, including real-time tracking of tumor movement to ensure the beam stays on target. Tissue response can also be viewed with the onboard MRI.

The Elekta Unity system will likely become the second FDA-cleared system. It is currently pending FDA 510(k) approval. It was the centerpiece of the Elekta booth at ASTRO. It gained European CE mark in 2018 and is being reviewed by the FDA. It uses a Philips 1.5T MRI system, which is a standard magnet strength in general radiology MRI systems. It should offer higher image quality than the ViewRay system, which uses a 0.3T imaging system.

The MagnetTx Aurora MRI-guided radiation therapy system was also shown at ASTRO 2018. This startup company submitted for FDA 510(k) review this fall. The company has been developing the system over the past decade. It uses a unique cryogen-free 0.5T MRI system, so there is no need for a vent stack. It also offers a large 110 cm bore, allowing room for the patient table to be moved to align the iso-center of tumors with the linac beam.

 

Novel PET-guided Radiation Therapy

Displayed for the first time at ASTRO was RefleXion Medical’s biology-guided radiotherapy (BgRT). It uses a novel positron emission tomography/computed tomography (PET-CT) system combined with a Linac in a single gantry that offers a new approach to real-time adaptive therapy.

It is the first system to utilize the cancer itself to guide radiation delivery, even in tumors that are moving. The system uses positron emission tomography (PET) to track the radioactive tracer uptake in cancer cells to lock onto the tumors and eliminate or reduce the need for margins to account for motion. The PET system triangulates the location of the radiotracer for accurate, 3-D, real-time tumor tracking. The RefleXion system also has the ability to track and treat several sites at the same time.

 

Trends in Proton Therapy Systems

The key messages at ASTRO regarding proton therapy systems were that these are getting smaller, pencil beam therapy will likely become the standard of care in the coming years, and two new treatment methods may significantly cut treatment times and improve outcomes.

Varian and IBA showed new concepts with their systems to speed treatment delivery. Varian announced at ASTRO it is working on a way to deliver a single fraction, one second, very high dose of protons to a tumor to enable a one day, one-and-done session called Flash therapy. The vendor said its newer cyclotron has the capability of delivering much higher proton dose rates than previous generation systems, enabling it to deliver ultra-high dose rates of 40-120 Gy per second.

IBA announced at ASTRO that the first patients have been treated using a Spot Scanning Proton Arc (SPArc) plan at the Beaumont Health Proton Therapy Center in Royal Oak, Mich. Instead of using a traditional series of beams that intersect a tumor and require the gantry or patient to be rotated for each beam, proton arc therapy leaves the beam on as it rotates around the patient, enabling much shorter therapy delivery times.

 

Tumor Tracking Imaging Using PET-CT

GE Healthcare showed an interesting new imaging technology that allows 4-D visualization of tumor movement during respiration on PET-CT called MotionFree. The technology now available on GE’s PET-CT scanners reduces blur caused by respiratory motion to make nuclear images much clearer. This can aid in identification of smaller tumors that otherwise would have been missed with conventional PET imaging. The MotionFree software also automatically detects and eliminates motion blur on PET scans and enhances 4-D visualization. The correction algorithm improves overall PET image clarity, making the scans look more like CT images.

 

Related ASTRO content:

VIDEO: Editor's Choice of the Most Innovative Radiation Oncology Tech at ASTRO 2018

Technology Report: Patient-centered Care in Radiation Therapy

itnTV "Conversations": The Accuray Philosophy

VIDEO: Improving Breast Cancer Surgery With Electronic Brachytherapy 

VIDEO: Use of Liquid Biopsies to Assess Radiotherapy Response

Varian Looks Ahead at ASTRO 2018

Related Content

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
Off-site imaging companies are playing a key role in the fight against COVID-19
Feature | Coronavirus (COVID-19) | May 26, 2020 | By Sean Zahniser
After the worst of the COVID-19 pandemic has pas
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Despite facing challenges such as limited access to personal protective equipment (PPE) following the COVID-19 outbreak, radiation oncology clinics quickly implemented safety and process enhancements that allowed them to continue caring for cancer patients, according to a new national survey from the American Society for Radiation Oncology (ASTRO).

Getty Images

News | Coronavirus (COVID-19) | May 21, 2020
May 21, 2020 — Despite facing challenges such as limited access to...
In response to the significant healthcare delivery changes brought on by COVID-19, Varian has launched new capabilities for its Noona software application, a powerful tool designed to engage cancer patients in their care for continuous reporting and symptom monitoring.
News | Radiation Oncology | May 21, 2020
May 21, 2020 — In response to the significant healthcare delivery changes brought on by...
The global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at a CAGR of 3.38%, over the period 2020-2024.
News | Proton Therapy | May 20, 2020
May 20, 2020 — ResearchAndMarkets.com has released its latest report, the ...