Feature | November 20, 2014

Surgeons use 3-D Printed Model of Heart to Treat Patients with Disorders

A 3-D printed model of the heart, combined with standard medical images, may help surgeons treat patients born with complicated heart disorders

3-D heart model, congenital heart defects, cardiovascular surgery

Plaster composite heart focusing on the intracardiac details to aid surgical planning.

November 20, 2014 — An experimental 3-D printed model of the heart may help surgeons treat patients born with complicated heart disorders, according to research presented at the American Heart Association’s Scientific Sessions 2014.

Most heart surgeons use 2-D images taken by X-ray, ultrasound and magnetic resonance imaging (MRI) for surgical planning. However, these images may not reveal complex structural complications in the heart’s chambers that occur with congenital heart defects, as opposed to developing later in life within a structurally normal heart.

But with standard 2-D images as a guide, doctors now can build a detailed 3-D model of the heart from various materials, such as plaster or ceramic, to reveal even the most complicated structural abnormalities.

“With 3-D printing, surgeons can make better decisions before they go into the operating room,” said Matthew Bramlet, M.D., study lead author and assistant professor of pediatric cardiology and director of the Congenital Heart Disease MRI Program at the University of Illinois College of Medicine in Peoria. “The more prepared they are, the better decisions they make, and the fewer surprises that they encounter.

“When you’re holding the heart model in your hands, it provides a new dimension of understanding that cannot be attained by 2-D or even 3-D images. What once was used to build trucks, we’re using now to build models of hearts.”

Researchers used an inexpensive plaster composite material to create heart models of a 9-month-old girl, 3-year-old boy and a woman in her 20s, all of whom had complex congenital heart defects. After studying the models and traditional images, surgeons successfully repaired severe heart abnormalities in all three patients.

“You could see that if you make this compromise here, you could fix this problem, and go from a single-ventricle to a two-ventricle repair,” Bramlet said. “That is the difference, potentially, between a life expectancy of two to three decades, to four, five or six decades.”

Researchers caution that this was a small study and 3-D printing is still an emerging technology that is not approved by the U.S. Food and Drug Administration.

The university’s collaborator, the Jump Trading Simulation and Education Center in Peoria, made the printer available for the study.

Co-authors are Randall Fortuna, M.D., and Welke Karl, M.D. Author disclosures are on the manuscript.

Private donors supported the study.

For more information: www.heart.org

Related Content

 CAE Healthcare will showcase its mixed reality training solutions for practicing physicians and medical imaging companies for the first time at the Radiological Society of North America (RSNA) 2019 meeting. With technology platforms that integrate modeled human physiology into immersive, augmented reality environments, CAE Healthcare partners with vendors to deliver risk-free training solutions that meet the needs of physicians and equipment providers. #RSNA19 #RSNA2019
News | Virtual and Augmented Reality | November 27, 2019
November 27, 2019 — CAE Healthcare will showcase its mixed reality training solutions for practicing physicians and m
LungPrint Discovery offers fully automatic radiological metrics and unique, time-saving airway visualizations
News | Advanced Visualization | October 29, 2019
October 29, 2019 — VIDA Diagnostics, Inc.
Virtual Reality 3-D Models Help Yield Better Surgical Outcomes

Joseph Shirk, M.D., of UCLA with the virtual reality headset. Image courtesy of UCLA Jonsson Comprehensive Cancer Center

News | Virtual and Augmented Reality | September 25, 2019
A UCLA-led study has found that using three-dimensional virtual reality (VR) models to prepare for kidney tumor...
3D Systems Earns Additional FDA Clearance for D2P Medical 3-D Printing Software

3D Systems’ D2P FDA-cleared software allows clinicians to 3-D-print diagnostic patient-specific anatomic models. Image courtesy of 3D Systems.

Technology | Medical 3-D Printing | September 12, 2019
3D Systems has received additional U.S. Food and Drug Administration (FDA) 510(k) clearance for its D2P software...
A 3-D printed tungsten pre-clinical X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten pre-clinical X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | September 04, 2019 | By Steve Jeffery
In ...
Delaware Imaging Network Now Offers NeuroQuant Brain Imaging MRI Software
News | Neuro Imaging | August 29, 2019
Delaware Imaging Network (DIN), Delaware’s largest network of outpatient medical imaging centers, has added NeuroQuant...
Smoldering Spots in the Brain May Signal Severe MS

NIH researchers found that dark rimmed spots representing ongoing, “smoldering” inflammation, may be a hallmark of more disabling forms of multiple sclerosis. Image courtesy of Reich lab, NIH/NINDS.

News | Neuro Imaging | August 22, 2019
Aided by a high-powered brain scanner and a 3-D printer, National Institutes of Health (NIH) researchers peered inside...
RSNA and ACR to Collaborate on Landmark Medical 3D Printing Registry
News | Medical 3-D Printing | August 08, 2019
The Radiological Society of North America (RSNA) and the American College of Radiology (ACR) will launch a new medical...