Feature | October 06, 2011 | Roberto G. Aranibar, Frost & Sullivan Healthcare Research Analyst

Recent Trends & Developments in Ultrasound Technology

This article appeared as the introduction to a chart on ultrasound systems in the October 2011 issue.

For a 2016 update to this article, read the article and related links at "Advances in Ultrasound."

 

The overarching trend in ultrasound continues to be the development of smaller and more powerful imaging platforms. The provision of hand-carried systems that offer advanced functionality and premium image quality in a small, easy-to-use and affordable package has almost become essential to growth in ultrasound over the last few years.

Two recently released products that exemplify the state-of-the-art in hand-carried ultrasound are Sonosite’s Nanomaxx and GE Healthcare’s Venue 40 systems. Each weighing only 6 pounds, both of these systems are tablet-style devices that provide simple user-interfaces and can be mounted on a cart. Despite their compact form, these systems offer capabilities such as color power Doppler and come equipped with many of the latest image-enhancing technologies, including speckle reduction, auto image optimization algorithms and color flow mapping.

With launches of three more pocket-sized ultrasound systems since the Siemens Acuson P10 in late 2007, the concept of handheld ultrasound has gained increasing attention. Released in early 2010, the GE Vscan is similar to the Acuson P10 in that it features a phased array transducer and operates in the 2-4 MHz frequency range. But, a significant improvement is that in addition to providing fundamental and harmonic black/white imaging, Vscan also offers color Doppler imaging.

Pocket ultrasound devices have also shrunk considerably, with the lightest, the Signostics’ Signos, weighing only 0.7 pounds. While the Signos does not provide color Doppler, a unique advantage of this system is its ability to be used with a higher frequency transducer for superficial imaging.

The most recently introduced pocket ultrasound from MobiSante, the MobiUS SP1, is composed of an ultrasound probe, software and a smartphone that enables image transfer via WiFi networks.

Other Developments
Despite overshadowing by the ongoing trend in hardware miniaturization, there also have been several noteworthy developments of new software-based technologies. They address previous shortcomings of ultrasound, simplify integration with other diagnostic image data and bring improvements to clinical workflow.

Released in 2010, Advanced Needle Visualization is Sonosite’s proprietary software algorithm for improved needle visualization during ultrasound-guided interventional procedures, such as biopsies, nerve blocks and vascular access. Poor visualization of needles inserted at steep angles and toward deep targets has been a limitation of ultrasound. This phenomenon is caused by a reduction in echoes from the needle shaft and tip when a needle is tilted at angles of more than 15-20 degrees. This software allows clear visualization of needles at angles of more than 50 degrees and is expected to have a considerable impact on the speed and success of these procedures.

Other software advancements include the ability to co-register and fuse real-time ultrasound with images acquired using other modalities, such as computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). This  capability was introduced by GE Healthcare in late 2008. Several vendors also have introduced software that automate tasks and anatomical measurements.

One noteworthy example is Toshiba’s recently launched Auto-IMT (intima-media thickness) technology, which has helped make risk assessment for cardiovascular disease faster and easier.

Elastography software has existed since the late 1990s, but has only recently started becoming more quantitative in nature. Though not yet commercially available in the United States, Siemens Virtual Touch tissue quantification application, part of its acoustic radiation force impulse (ARFI) technology, enables quantitative measurements of tissue stiffness that are intended to lead to more objective diagnoses of pathologies in the breast and organs such as the liver. Quantitative elastography is expected to improve clinical decision-making and lead to fewer unnecessary invasive procedures.

Zonare’s Zone Sonography Technology (ZST) replaces the image processing and scan converting components of conventional systems. It uses a software-based solution to reduce cost and size, enables easier upgradeability and significant improvements in image quality and acquisition speed. This is achieved through a novel technique that acquires larger volumes of data from a smaller number of “zones,” rather than the line-by-line acquisition used by most systems.

Transducer Improvements
There have been significant advancements in transducer technology, particularly with the development of Philips Healthcare’s PureWave crystal technology. Using a new manufacturing process, Philips was able to produce a transducer crystal with fewer defects and more uniformity than the crystals used in conventional piezoelectric-based ceramic transducers for more than 40 years. These new crystals not only yield considerable improvements in the precision and efficiency of energy conversion, but also made it possible to provide operation over a broad range of frequencies that previously required use of more than one probe. Philips’ PureWave crystals are complemented by the manufacturers’ xMatrix array technology, which enables simultaneous acquisition of two orthogonal imaging planes, allowing 2-D and 3-D imaging to be performed using a single imaging probe.

Frost & Sullivan enables clients to accelerate growth and achieve best-in-class positions in growth, innovation and leadership. It leverages 50 years of experience in partnering with Global 1000 companies. For more information: www.frost.com

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
New Vascular Ultrasound Registry Looks to Enhance Patient Care
News | Cardiovascular Ultrasound | January 17, 2018
The Society for Vascular Ultrasound (SVU), the Society for Vascular Surgery (SVS) and Medstreaming-M2S announced the...
Sponsored Content | Videos | Ultrasound Imaging | January 11, 2018
Mindray recently featured a new upgrade for its premium Resona 7 ultrasound system at the Radiological Society of North...
New International Report Provides Comprehensive Guide to Imaging in Chagas Heart Disease
News | Cardiovascular Ultrasound | January 03, 2018
Chagas disease (ChD), an infectious parasitic disease transmitted primarily by triatomine insects, has become a...
Bay Labs Completes $5.5 Million Series A Financing for AI-Driven Ultrasound
News | Cardiovascular Ultrasound | December 21, 2017
December 21, 2017 — Bay Labs, a medical technology company applying...
Toshiba Medical Introduces New Entry-Level Aplio i600 Ultrasound Platform
News | Ultrasound Imaging | December 21, 2017
Toshiba Medical, a Canon Group company, showcased the Aplio i600, the newest addition to the premium Aplio i-series...
Videos | RSNA 2017 | December 20, 2017
ITN and DAIC Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies on the
GE and NVIDIA Unveil Artificial Intelligence Upgrades to CT, Ultrasound and Analytics Solutions
Technology | Artificial Intelligence | December 14, 2017
At the 2017 Radiological Society of North America (RSNA) Annual Meeting, GE Healthcare and NVIDIA announced a series of...
Hitachi Highlights Arietta 850 Premium Ultrasound System at RSNA 2017
News | Ultrasound Imaging | December 05, 2017
Hitachi Healthcare exhibited their latest premium ultrasound system, the Arietta 850, at the 2017 Radiological Society...
Overlay Init