Feature | February 09, 2012 | Dave Fornell

The Race to Image Alzheimer’s Disease

Several molecular imaging agents in development can image amyloid plaques for earlier detection and to test treatments

Several positron emission tomography (PET) imaging agents are being developed to visualize Alzheimer’s disease in the living brain to accurately diagnose patients and develop effective treatments. The only way to confirm the presence of the disease currently is by examining post-mortem samples of the patient’s brain. Experts predict these agents may soon receive U.S. Food and Drug Administration (FDA) clearance.

It is estimated 18 million people worldwide have Alzheimer’s disease, and that number could double by 2025. There is currently no definitive early detection method for the disease. Symptoms of Alzheimer’s usually do not appear until after the disease is well established and by that time, damage has already been caused to the brain.

Post-mortem samples of the patient’s brain tissue are used to positively identify the disease by the presence of beta-amyloid plaques – a root cause of Alzheimer’s. These plaques group together and kill neurons. However, the inability to image the soft tissue disease inside a living brain has hampered the ability of researchers to track its progress in living patients or monitor the effect of potential treatments.

PET May Offer the Key
Researchers are now advancing PET as an effective method of early detection. Three studies presented in June at the Society of Nuclear Medicine (SNM) annual meeting provide new insights into the development of Alzheimer’s disease and open the door to future clinical screening and development of treatments.

“Molecular imaging of Alzheimer’s disease might be available in the next year,” predicted Michael Graham, M.D., Ph.D., during a press conference on key molecular imaging research at the SNM meeting. “There is fairly good evidence you can image early stages of Alzheimer’s before the disease progresses. It opens up the possibility of new therapies for treatment. This has been a huge limitation.”
He said several agents are being developed. The most promising include Pittsburgh compound B (PiB), developed by the University of Pittsburgh, and AV45, owned by Eli Lilly and Company.

These imaging agents are key in developing treatments for Alzheimer’s, said Chet Mathis, Ph.D., professor of radiology, department of pharmacology and chemical biology, University of Pittsburgh, during a presentation at SNM. He helped develop PiB, which he explained is a carbon 11 compound that uses neutrally charged thioflavin T, an established histological stain used to detect beta-amyloid.

Clinical studies of PiB have successfully identified patients with probable Alzheimer’s from healthy patients and predicted the likelihood of disease progression in those with mild cognitive impairment. However, widespread use of the 11-C compound is limited, due to its short 20-minute half-life and the need for an onsite cyclotron.

Development of 18-F Agents
One of the major questions in Alzheimer’s imaging has been which imaging agent is best for amyloid plaque screening. Due to the limitations of PiB, 18-F amyloid imaging agents are seen as the most likely to move forward into clinical practice in the near future. Two of the current studies are gauging the benefit of using 18-F labeled tracers (18-F florbetaben and 18-F florbetapir), which are proving to be good predictors of progression to Alzheimer’s disease.

Lilly is developing the imaging agent florbetapir 18-F AV-45 (trade name is Amyvid). Hank Kung, Ph.D., professor of radiology and pharmacology, department of radiology, University of Pennsylvania, helped develop the compound and spoke about it and other compounds at the SNM meeting.

Both Kung and Mathis said developing agents that can pass through the blood-brain barrier is difficult. In addition, the agent needs to have an affinity to bind with amyloid plaque. The third key component is the need to have a good signal-to-noise characteristic, where the agent is still clearly visible on images and remains bound to the plaques after it has washed out of other parts of the brain not affected by plaques. Mathis said this is one of the most difficult features to find when developing these agents.

Kung screened more than 1,000 compounds over seven years before finding AV-45. Avid Radiopharmaceuticals successfully completed a Phase III FDA clinical trial for the agent in 2010. Eli Lilly and Company purchased the company in November 2010.

In January 2011, an FDA advisory committee unanimously recommended that Avid’s AV-45 PET agent be approved for use, but required the company to develop clear guidelines establishing when a test has identified enough amyloid plaque to make a positive diagnosis of Alzheimer’s. Lilly and Avid Radiopharmaceuticals received a complete response letter from the FDA in March 2011, which focused on the need to establish a reader training program for market implementation to ensure reader accuracy and consistency of interpretations of existing AV-45 scans. The company expects submission for final FDA review of AV-45 in the second half of 2011.

GE Healthcare is developing a flutemetamol 18-F agent that is currently in Phase III development. Three clinical abstracts examining the efficacy of flutemetamol amyloid imaging in the early detection of Alzheimer’s were featured in July at the 2011 Alzheimer’s Association International Conference on Alzheimer’s Disease (ICAD) in Paris. A recently published study[1] showed complete agreement between visual reads of 18-F flutemetamol PET scans and histology.

Bayer is developing 18-F florbetaben, which is in a Phase III trial of 400 patients with and without dementia. The trial is expected to be completed in 2011, but data is not expected to be finalized until 2014. Data so far show a sensitivity of 80 percent and a specificity of 91 percent in identifying patients with Alzheimer’s from healthy controls.[2]

AstraZeneca is working on an agent called AZD4694, a benzofuran-derived radioligand containing fluorine 18. The agent is currently in a Phase II trial, which the company expects to complete in 2011.[3]

References:
1. David A. Wolk, et al. “Association Between In Vivo Fluorine 18–Labeled Flutemetamol Amyloid Positron Emission Tomography Imaging and In Vivo Cerebral Cortical Histopathology.” Archives of Neurology. Published online July 11, 2011. doi:10.1001/archneurol.2011.153
2. Henryk Barthel, et al. “Cerebral amyloid-? PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study.” The Lancet Neurology, May 2011, vol. 10, issue 5, pages 424 – 435,  doi:10.1016/S1474-4422(11)70077. Published online April 11, 2011.
3. “To Compare Positron Emission Tomography (PET) Measurements of Fibrillar Amyloid Burden.” www.clinicaltrial.gov/ct2/show/NCT00991419?term=D2750N00006&rank=1. Accessed July 18, 2011.

Related Content

Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Male Triathletes May Be Putting Their Heart Health at Risk
News | Cardiac Imaging | January 09, 2018
Competitive male triathletes face a higher risk of a potentially harmful heart condition called myocardial fibrosis,...
PET Tracer Gauges Effectiveness of Promising Alzheimer's Treatment

Longitudinal PET imaging with 18F-AV45. PET imaging shows the average 18F-AV45 uptake per animal group at 8 and 13 months of age. A significant interaction of genotype treatment was observed in the cortex (p = 0.0248), hippocampus (p = 0.0071) and thalamus (p = 0.0084), indicating reduced [18F]-AV45 uptake in BACE1 inhibited transgenic mice. Credit: MICA, University of Antwerp, Belgium.

News | Radiopharmaceuticals and Tracers | December 28, 2017
In the December featured basic science article in The Journal of Nuclear Medicine, Belgian researchers report on the...
Videos | Magnetic Resonance Imaging (MRI) | December 19, 2017
Emanuel Kanal, M.D., director of MRI services and professor of radiology and neuroradiology at the University of Pitt
The FDA issued new warnings on MRI gadolinium contrast agents. (GBCAs)

The FDA issued new warnings on MRI gadolinium contrast agents. 

Feature | Magnetic Resonance Imaging (MRI) | December 19, 2017
The U.S.
Brainlab Contrast Clearance Analysis Software Receives FDA 510(k) Clearance
Technology | Contrast Media | December 12, 2017
Brainlab announced U.S. Food and Drug Administration (FDA) clearance of its Contrast Clearance Analysis methodology,...
Sectra Offers Gadolinium Tracking Functionality in DoseTrack Software
Technology | Contrast Media | December 11, 2017
December 11, 2017 — Sectra recently announced the global introduction of gadolinium tracking in its dose monitoring s
Videos | Magnetic Resonance Imaging (MRI) | December 07, 2017
Max Wintermark, M.D., professor of radiology and chief of neuroradiology, Stanford Hospital and Clinics, discussed MR
Michael J. Fox Foundation and Tau Consortium Developing PET Tracers for Neurodegenerative Disease
News | Radiopharmaceuticals and Tracers | October 27, 2017
The Michael J. Fox Foundation for Parkinson's Research (MJFF) and the Tau Consortium announced a funding partnership to...
Guerbet to Participate in French Interventional Radiology Conference
News | Contrast Media | October 10, 2017
Guerbet announced it will be taking part in the 65th edition of the Journées Francophones de Radiologie (JFR) that will...
Overlay Init