Feature | June 12, 2014

PET/MR Superior for Verifying Coronary Arterial Disease

Study finds the newest hybrid cardiac molecular imaging system highly effective for the detection

June 12, 2014 — Ischemic heart disease, a narrowing of the arteries supplying blood to the heart, is a leading cause of death throughout the world. A hybrid molecular imaging technique called positron emission tomography and magnetic resonance imaging (PET/MR), which tells doctors vital information about cardiac and arterial function, has been found to be an effective molecular imaging tool for detecting coronary artery disease (CAD), say researchers at the Society of Nuclear Medicine and Molecular Imaging’s 2014 Annual Meeting (SNMMI).

Often patients suspected of having CAD undergo a stress test called myocardial perfusion imaging (MPI) to smoke out areas of arterial ischemia and risk of myocardial infarction, or heart attack. Many undergo a molecular imaging scan called single photon emission computed tomography (SPECT), but in recent years PET/MR has emerged as a potential alternative due to its superiority for imaging the structures of soft tissues and the physiological function of the heart. This clinical study showed that PET/MR is consistently accurate using coronary angiography as the reference standard for detecting CAD.

“By combining two advanced imaging modalities, PET and MR, cardiac PET/MR imaging allows a union of anatomic information with MR and functional information with PET for a comprehensive view of the of the heart,” said principal author Jeffrey M.C. Lau, M.D., Ph.D., from Washington University in St. Louis, Mo. “This allows us to predict or rule out coronary artery disease with more certainty, and in some instances, it allows us to detect disease processes such as areas of hibernating heart muscle that would not have been detected using conventional stress testing methods like SPECT.”

In addition, cardiac perfusion PET/MR can be performed in a shorter timeframe than SPECT and is associated with a lower dose of radiation per procedure, and MR can be used to produce an almost of disease in the arteries of the heart when compared to industry standard cinematic, multiple-frame sequence of the motion in specific regions of the heart muscle, most notably the left ventricle, which pumps oxygenated blood back into the body through the aorta. PET also provides quantitative data about blood flow in addition to the visual interpretation of disease.

The study involved 10 patients with reversible ischemia as indicated by SPECT-MPI. Scientists administered a radionuclide PET imaging agent called N-13 ammonia plus an MR contrast agent called gadolinium and the pharmaceutical Regadenoson, which imitates the stress of exercise. The researchers optimized the cardiac PET/MR imaging protocol in order to register areas of reduced perfusion of blood using MR with PET data about myocardial blood flow. The results showed that PET/MR imaging was very accurate in diagnostic coronary artery diseases. In this small sample, PET/MR had 100 percent sensitivity, 80 percent specificity and 100 percent negative predictive value. Those numbers compare favorably to SPECT in this study group.

This study was conducted in conjunction with Siemens Medical Solutions and funded in part by Astellas Pharma Inc.

For more information: www.snmmi.org

Related Content

MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Study Explores Magnetic Nanoparticles as Bimodal Imaging Agent for PET/MRI

Image courtesy of MR Solutions.

News | PET-MRI | May 23, 2019
Researchers from Bourgogne University in Dijon, France, showed that use of superparamagnetic iron oxide nanoparticles (...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
Blue Earth Diagnostics Expands Access to Axumin in Europe
News | Radiopharmaceuticals and Tracers | May 13, 2019
Blue Earth Diagnostics announced expanded access to the Axumin (fluciclovine (18F)) imaging agent in Europe. The first...