Feature | Breast Density | June 28, 2016

New York Passes Insurance Bill Requiring Coverage Breast Screening, Supplemental Imaging

New York is first state to require full insurance coverage without co-pays for all breast screenings, and supplemental imaging including MRI and breast ultrasound for women with dense breasts

fibroglandular densities, dense breasts, New York Legislation, New York Law,

New York State is taking the most aggressive action in the nation to improve access to breast cancer screening with a new law requiring health insurance to cover all screening and diagnostic imaging exams for the detection of breast cancer. The law includes supplemental imaging for all women. The law, signed by Gov. Andrew Cuomo June 27, removes insurance barriers for all women, including cost-sharing in the form of annual deductibles or coinsurance. It is the first law in the country requiring insurance companies to cover all of the costs of supplemental imaging to encourage women with dense breasts to seek additional screenings.

"Eliminating these insurance barriers will prevent women from paying out-of-pocket for breast cancer screening, including imaging for the detection of breast cancer, diagnostic mammograms, breast ultrasounds, or magnetic resonance imaging (MRI),” stated a press release issued by the governor’s office.

The new law (insurance bill S8093) goes into effect Jan. 1, 2017.

In 2013, New York was the first state to adopt a dense breast notification law to inform patients in clear, unambiguous language if their mammogram showed high fibroglandular densities, said New York advocate and Executive Director of DenseBreast-info.org, JoAnn Pushkin. She said after New York's law went into effect, two things became evident. The first was that further education was needed for both patients and their referring physicians about the implications of dense tissue. The second was that uncertainty over insurance coverage and high co-pay/deductibles could be deterrents to follow-up screening using breast ultrasound or MRI, which can see through dense breast issue.

One caveat on the new insurance bill, which it is not specific to New York, is that employer plans set up as "self-funded" are generally Exempt from state insurance laws. This means coverage might still be extended, but patient would have to pay co-pay and deductible.

For more information: DenseBreast-info.org

 

Related Breast Density Content:

List of State Insurance and Inform Laws Regarding Dense Breasts and Required Coverage for Supplemental Imaging

New Technology and Clinical Data in Breast Imaging

 

Additional Resources on ITN for Breast Imaging and Dense Breast technology Information

Mammographic Breast Density — What It Means

New Technology and Clinical Data in Breast Imaging (articles from 2017)

VIDEO: Advances and Trends in Breast Imaging

Trends in Breast Imaging

Making Sense of Dense Breasts

Dense Breast Tissue: Supplemental Imaging

Breast Density: Are You Informed?

 

Related Content

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned. #COVIDvaccine #COVID19

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned.

News | Breast Imaging | February 24, 2021
F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

News | Molecular Imaging | February 22, 2021
February 22, 2021 — Molecular imaging
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne
A comparison of standard mammography imaging (left) in a woman with dense breasts and a breast MRI imaging study (right) showing a clearly defined cancer and is extremely hard to detect on the mammograms.

A comparison of standard mammography imaging (left) in a woman with dense breasts and a breast MRI imaging study (right) showing a clearly defined cancer and is extremely hard to detect on the mammograms. Images from Christiane Kuhl, M.D.

Feature | MRI Breast | February 17, 2021 | By Dave Fornell, Editor
Dense breast tissue can hide cancers i
Screening strategy based on baseline breast density at age 40 may be effective and cost-effective for reducing breast cancer mortality

Getty Images

News | Breast Density | February 10, 2021
February 10, 2021 — A mammography screenin...
Comparison of breast cancer mortality rates (red squares) and distant-stage breast cancer incidence rates from SEER9 (blue dots) and SEER18 (green dots) per 100,000 for white women aged, A, 20–39, B, 40–69, and, C, 70–79 years (3,7,8).

Comparison of breast cancer mortality rates (red squares) and distant-stage breast cancer incidence rates from SEER9 (blue dots) and SEER18 (green dots) per 100,000 for white women aged, A, 20–39, B, 40–69, and, C, 70–79 years (3,7,8). Image courtesy of Radiology 

News | Breast Imaging | February 10, 2021
February 10, 2021 — Breast cancer death rates have stopped declining for women in the U.S.
After acquiring the molecular breast imaging (MBI) assets from GE Healthcare and Dilon Technologies, Inc., SmartBreast Corporation (SmartBreast), a privately held company focused on breast cancer screening and diagnosis, announced today that it has formed a partnership with FoxSemicon Integrated Technologies, Inc. (FITI) to manufacture molecular breast imaging (MBI) systems.
News | Breast Imaging | February 09, 2021
February 9, 2021 — After acquiring the...

Chart courtesy of the American Cancer Society

News | Breast Imaging | February 08, 2021
February 8, 2021 — Cancer ranks as a leading cause of death in every country in the world, and, for the first time,
Volpara Health, a health technology software company whose integrated breast care platform assists in the delivery of personalized patient care, announced the acquisition of CRA Health, LLC, a breast cancer risk assessment company spinoff from Massachusetts General Hospital — a Harvard Medical School teaching hospital.

Getty Images

News | Breast Imaging | February 02, 2021
February 2, 2021 — Volpara Health, a health technology software company whose integrated...