Feature | January 30, 2015

New Plaque-Detecting Nanoparticle Imaging Agent Enters Clinical Trials

Agent lights up arterial plaque during PET scans, could help identify high-risk patients

Pamela Woodard, nanoparticle, Washington University, PET scan, plaque

Pamela Woodard, M.D., led a team that designed a new imaging agent that may light up dangerous plaque in arteries.

Diagram of nanoparticle

Diagram of nanoparticle. The nanoparticle is unique in how it is targeted, according to Yongjian Liu, Ph.D., assistant professor of radiology and co-investigator on the project. Previous research demonstrated that a receptor called NPR-C is present on the surface of cells that line blood vessels and is increased in atherosclerotic plaque. So the investigators added a small molecule to the nanoparticle that seeks out and binds to NPR-C, specifically targeting the particle to potentially dangerous plaque.

January 30, 2015 — The U.S. Food and Drug Administration (FDA) has approved for human evaluation a nanoparticle-based imaging agent jointly developed at Washington University School of Medicine in St. Louis and the University of California, Santa Barbara, in collaboration with Texas A&M University. The imaging agent may illuminate dangerous plaque in arteries, and doctors hope to use it to identify patients at high risk of stroke.

“This is the first receptor-targeted nanoparticle agent for cardiovascular imaging approved for investigational use in humans,” said principal investigator Pamela K. Woodard, M.D., professor of radiology and of biomedical engineering. “Starting with bench research, then developing and testing the agent and taking it through the FDA process into human patients has involved an extensive team of basic scientists, clinical researchers and clinicians.”

In patients with atherosclerosis, plaque accumulates on the inner walls of arteries that deliver blood to the body.

“Plaque is a complex structure made up of cholesterol, calcified deposits and other substances, all of which can cause inflammation,” said Woodard, also director of the Center for Clinical Imaging Research at the Mallinckrodt Institute of Radiology at Washington University. “Depending on the severity of the inflammation, these plaques can be stable or progress to a vulnerable phase in which they rupture, leading to stroke or heart attack.”

According to Woodard, many studies have indicated that most patients with plaque narrowing a carotid artery won’t go on to have a stroke.

“With current technology — such as ultrasound — we can’t tell whether the plaque is vulnerable or stable,” she said. “So we can’t distinguish the high-risk patients who need surgery from low-risk patients who can be treated with medication alone. We designed this nanoparticle agent to develop a test that can detect these vulnerable plaques and identify those patients at highest risk of stroke and in need of surgery to remove the plaque.”

This nanoparticle agent illuminates plaque in any of the body’s arteries and can be detected with a positron emission tomography (PET) scan. Researchers recently began testing the safety of the nanoparticle in healthy individuals. They next will focus on patients with atherosclerosis who already are scheduled to undergo surgery to remove plaque from their carotid arteries.

“In this way, we’ll be able to see whether the areas that light up in the image because of our nanoparticles are the same areas that contain vulnerable plaque, as assessed from the surgeries,” Woodard said. “Once we show success imaging the carotid arteries, we will evaluate the nanoparticle agent in other vessels such as the coronary arteries, which represent a greater challenge because of their smaller size and complex motion.”

The nanoparticle also carries copper atoms, making it visible with a standard PET scanner. Similar small amounts of copper-64 regularly are used in PET scans, a technique common in cancer detection and therapy and neurologic imaging.

In addition, components of the nanoparticle also are designed to self-assemble in the watery environment of blood.

“The success of this nanoparticle system relies on the controlled self-assembly of functional polymers in water, which is driven by the careful design of hydrophilic (water-attracting) and hydrophobic (water-repelling) segments into the polymers,” said Craig J. Hawker, Ph.D., professor and director of the California Nanosystems Institute at the University of California, Santa Barbara. 

Added Woodard: “We have been able to develop this highly receptor-specific imaging technology because of the generous support from the National Heart, Lung and Blood Institute, our diverse and dedicated team of investigators and our extensive facilities that allow us to make this nanoparticle imaging agent in a sterile environment, meeting the FDA requirements for use in people.” 

According to the university’s Office of Technology Management, Pamela K. Woodard, Geoffrey E. Woodard, Rafaella Rossin and the late Michael J. Welch are the inventors of the patented NPR-C imaging method.

For more information: www.medicine.wustl.edu

Related Content

Study Explores Magnetic Nanoparticles as Bimodal Imaging Agent for PET/MRI

Image courtesy of MR Solutions.

News | PET-MRI | May 23, 2019
Researchers from Bourgogne University in Dijon, France, showed that use of superparamagnetic iron oxide nanoparticles (...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Blue Earth Diagnostics Expands Access to Axumin in Europe
News | Radiopharmaceuticals and Tracers | May 13, 2019
Blue Earth Diagnostics announced expanded access to the Axumin (fluciclovine (18F)) imaging agent in Europe. The first...
Shine Medical Technologies Breaks Ground on U.S. Medical Isotope Production Facility

Image courtesy of Amen Clinics

News | Radiopharmaceuticals and Tracers | May 10, 2019 | Jeff Zagoudis, Associate Editor
Shine Medical Technologies Inc. broke ground on their first medical isotope production facility in Janesville, Wis. U.S...
A 3-D printed tungsten X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | April 29, 2019 | By Steve Jeffery
In ...
NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...