Feature | Artificial Intelligence | April 25, 2017

Low-Cost AI Could Screen for Cervical Cancer Better Than Humans

An artificial intelligence image detection method has the potential to outperform PAP and HPV tests in screening for cervical cancer

Low-Cost AI Could Screen for Cervical Cancer Better Than Humans

April 25, 2017 —Artificial intelligence (AI) is already exceeding human abilities. Self-driving cars use AI to perform some tasks more safely than people. E-commerce companies use AI to tailor product ads to customers' tastes quicker and with more precision than any breathing marketing analyst.

And, soon, AI will be used to "read" biomedical images more accurately than medical personnel alone — providing better early cervical cancer detection at lower cost than current methods.

However, this does not necessarily mean radiologists will soon be out of business.

"Humans and computers are very complementary," said Sharon Xiaolei Huang, Ph.D., associate professor of computer science and engineering at Lehigh University in Bethlehem, Pa. "That's what AI. is all about."

Huang directs the Image Data Emulation & Analysis Laboratory at Lehigh where she works on artificial intelligence related to vision and graphics, or, as she says: "creating techniques that enable computers to understand images the way humans do." Among Huang's primary interests is training computers to understand biomedical images.

Now, as a result of 10 years work, Huang and her team have created a cervical cancer screening technique that, based on an analysis of a very large dataset, has the potential to perform as well or better than human interpretation on other traditional screening results, such as Pap tests and HPV tests — at a much lower cost. The technique could be used in less-developed countries, where 80 percent of deaths from cervical cancer occur.

The researchers are currently seeking funding for the next step in their project, which is to conduct clinical trials using this data-driven detection method.

Watch the video interview "Expanding Role for Artificial Intelligence in Medical Imaging" with Steve Holloway of healthcare market intelligence firm Signify Research at HIMSS 2017.

A more accurate screening tool, at lower cost

Huang's screening system is built on image-based classifiers (an algorithm that classifies data) constructed from a large number of Cervigram images. Cervigrams are images taken by digital cervicography, a noninvasive visual examination method that takes a photograph of the cervix. The images, when read, are designed to detect cervical intraepithelial neoplasia (CIN), which is the potentially precancerous change and abnormal growth of squamous cells on the surface of the cervix.

"Cervigrams have great potential as a screening tool in resource-poor regions where clinical tests such as Pap and HPV are too expensive to be made widely available," said Huang. "However, there is concern about Cervigrams' overall effectiveness due to reports of poor correlation between visual lesion recognition and high-grade disease, as well as disagreement among experts when grading visual findings."

Huang thought that computer algorithms could help improve accuracy in grading lesions using visual information — a suspicion that, so far, is proving correct.

Because Huang's technique has been shown, via an analysis of the very large dataset, to be both more sensitive (able to detect abnormality) as well as more specific (fewer false positives), it could be used to improve cervical cancer screening in developed countries like the United States.

"Our method would be an effective low-cost addition to a battery of tests helping to lower the false positive rate since it provides 10 percent better sensitivity and specificity than any other screening method, including Pap and HPV tests," said Huang.

Correlating visual features and patient data to cancer

To identify the characteristics that are most helpful in screening for cancer, the team created hand-crafted pyramid features (basic components of recognition systems) as well as investigated the performance of a common deep learning framework known as convolutional neural networks (CNN) for cervical disease classification.

They describe their results in an article in the March issue of Pattern Recognition called: "Multi-feature base benchmark for cervical dysplasia classification." The researchers have also released the multi-feature dataset and extensive evaluations using seven classic classifiers here.

To build the screening tool, Huang and her team used data from 1,112 patient visits, where 345 of the patients were found to have lesions that were positive for moderate or severe dysplasia (considered high-grade and likely to develop into cancer) and 767 had lesions that were negative (considered low-grade with mild dysplasia typically cleared by the immune system).

These data were selected from a large medical archive collected by the U.S. National Cancer Institute consisting of information from 10,000 anonymized women who were screened using multiple methods, including Cervigrams, over a number of visits. The data also contains the diagnosis and outcome for each patient.

"The program we've created automatically segments tissue regions seen in photos of the cervix, correlating visual features from the images to the development of precancerous lesions," said Huang. "In practice, this could mean that medical staff analyzing a new patient's Cervigram could retrieve data about similar cases — not only in terms of optics, but also pathology since the dataset contains information about the outcomes of women at various stages of pathology."

From the study: "...with respect to accuracy and sensitivity, our hand-crafted PLBP-PLAB-PHOG feature descriptor with random forest classifier (RF.PLBP-PLAB-PHOG) outperforms every single Pap test or HPV test, when achieving a specificity of 90 percent. When not constrained by the 90 percent specificity requirement, our image-based classifier can achieve even better overall accuracy. For example, our fine-tuned CNN features with Softmax classifier can achieve an accuracy of 78.41 percent with 80.87 percent sensitivity and 75.94 percent specificity at the default probability threshold 0.5. Consequently, on this dataset, our lower-cost image-based classifiers can perform comparably or better than human interpretation based on widely-used Pap and HPV tests..."

According to the researchers, their classifiers achieve higher sensitivity in a particularly important area: detecting moderate and severe dysplasia — or cancer.

Read the article "How Artificial Intelligence Will Change Medical Imaging."

For more information: www.sciencedirect.com

Related Content

SIIM Announces Keynote Speakers for Conference on Machine Intelligence in Medical Imaging
News | Artificial Intelligence | September 21, 2017
The Society for Imaging Informatics in Medicine (SIIM) recently announced several corporate and government experts as...
Carestream Demonstrates Artificial Intelligence Tools for Clinical Collaboration Platform
News | Enterprise Imaging | September 20, 2017
Carestream Health is demonstrating advanced imaging analytics software tools designed to enhance value in the delivery...
Matrix Analytics Beginning Validation of Deep Learning Lung CT Tools
News | Lung Cancer | September 13, 2017
Matrix Analytics announced it will clinically validate its LungDirect deep learning and predictive analytics tools for...
20/20 GeneSystems Launches AI-Based Lung Cancer Detection Technology in China
Technology | Lung Cancer | August 28, 2017
20/20 GeneSystems Inc. recently released in China what is believed to be the world’s first machine learning algorithm...
RSNA Announces Pediatric Bone Age Machine Learning Challenge
News | Artificial Intelligence | August 10, 2017
August 10, 2017 — The Radiological Society of North America (RSNA) is organizing a challenge intended to show the app
Xavier University Announces Healthcare Artificial Intelligence Summit
News | Artificial Intelligence | August 07, 2017
Xavier University has launched the Xavier Center for Artificial Intelligence (AI), a pioneering effort to accelerate...
SIIM Recognizes Innovators in Medical Imaging Informatics at 2017 Annual Meeting

Accepting the award on behalf of Arterys is Julia Geer shown with SIIM Chair Dr. Paul Nagy (left), and Innovation Challenge Co-Chair Dr. Ram Chadalavada (right)

News | Analytics Software | July 19, 2017
During the Society for Imaging Informatics in Medicine (SIIM) 2017 general closing session held in Pittsburgh, Fabien...
News | Artificial Intelligence | July 07, 2017
July 7, 2017 — Zebra Medical Vision and Telerad Tech, the technology arm of Teleradiology Solutions (TRS), announced
Sponsored Content | Videos | Artificial Intelligence | July 06, 2017
Eliot Siegel, M.D., associate vice chair of diagnostic radiology and nuclear medicine, vice chair of information syst
artificial intelligence

Photo courtesy of Philips Healthcare

Feature | Information Technology | July 05, 2017 | By Chris Scarisbrick
Hollywood has shone its lights on potential dystopian futures and the threats of cruel, calculating computers for...
Overlay Init