Feature | June 18, 2014

A Few Circulating Cancer Cells Could Cue Risk of Metastases

Research combines novel molecular imaging techniques to predict spread of cancer and patient survival based on outlier cancer cells in the blood

June 18, 2014 – A simple noninvasive blood test matched with state-of-the-art molecular imaging of individual cells could help oncologists understand their patients’ chances of survival, said researchers at the Society of Nuclear Medicine and Molecular Imaging’s 2014 Annual Meeting (SNMMI).

Metastasis accounts for an estimated 90 percent of cancer deaths. For decades, researchers tried to develop a way to gauge a cancer’s risk of metastasizing from a blood sample — the long-sought-after liquid biopsy. Today, there are numerous methods available to isolate lone cells. Novel methods recently used to study those cells are radioluminescence microscopy, which combines nuclear medicine, optical imaging and single-cell autoradiography (SCAR), used to localize the micro-distribution of radioactive substances in a single cell in order to image a particular physiological process, such as a receptor expressing genetic information or an enzyme involved in cellular metabolism.

“We are now starting to study the properties of these lone cancer cells, which could be predictive of different disease states, and that understanding could help guide therapy decisions,” said Laura S. Sasportas, a principal researcher and Ph.D. candidate in the Gambhir Lab in the department of bioengineering at Stanford University in Stanford, Calif. “The great potential of looking at circulating tumor cells (CTCs) has been limited mainly by their extreme rarity. For example, in the case of breast cancer, CTCs are estimated to be in the order of a few to a few hundred cells among billions of blood cells in a typical 7.5 milliliter blood sample from a cancer patient. In the past decade, however, CTC research has been booming due to the development of exciting new technologies that can sensitively detect and harvest those very rare cells from patient’s blood.”

For this study, researchers took breast cancer cells isolated from the blood of small animal models and imaged them using radioluminescence microscopy and SCAR along with a common molecular imaging radiotracer called F-18 fluorodeoxyglucose (FDG). The latter mirrors the exchange of energy in the presence of glucose in order to target the few hyper-metabolic cancer cells within these blood samples. Results of the research showed that less than 3 percent of CTCs in the sample indicated increased cellular metabolism compared to the parent cancer cell line. Researchers are not yet sure if this indicates an aggressive cancer cell or not. Further research and validation in clinical trials is needed to strengthen the theory.

“We hypothesize that the unexplored metabolic characterization of CTCs could provide valuable information for disease monitoring,” said Sasportas. “By evaluating the glucose metabolism of CTCs with F-18 FDG, we could better manage the care of cancer patients by improving therapy selection and therefore avoiding unnecessary treatment.”  

For more information: www.snmmi.org

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
FDA Clears United Imaging Healthcare uExplorer Total-Body Scanner
Technology | PET-CT | January 23, 2019
January 23, 2019 — United Imaging Healthcare (United Imaging) announced U.S.
MIM Software Inc. Receives FDA 510(k) Clearance for Molecular Radiotherapy Dosimetry
Technology | Nuclear Imaging | January 16, 2019
MIM Software Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for molecular radiotherapy...
FDA Approves Exablate Neuro for Tremor-Dominant Parkinson's Treatment
Technology | Focused Ultrasound Therapy | December 21, 2018
Insightec announced that the U.S. Food and Drug Administration (FDA) has approved an expansion of the indication of...