Feature | June 18, 2014

A Few Circulating Cancer Cells Could Cue Risk of Metastases

Research combines novel molecular imaging techniques to predict spread of cancer and patient survival based on outlier cancer cells in the blood

June 18, 2014 – A simple noninvasive blood test matched with state-of-the-art molecular imaging of individual cells could help oncologists understand their patients’ chances of survival, said researchers at the Society of Nuclear Medicine and Molecular Imaging’s 2014 Annual Meeting (SNMMI).

Metastasis accounts for an estimated 90 percent of cancer deaths. For decades, researchers tried to develop a way to gauge a cancer’s risk of metastasizing from a blood sample — the long-sought-after liquid biopsy. Today, there are numerous methods available to isolate lone cells. Novel methods recently used to study those cells are radioluminescence microscopy, which combines nuclear medicine, optical imaging and single-cell autoradiography (SCAR), used to localize the micro-distribution of radioactive substances in a single cell in order to image a particular physiological process, such as a receptor expressing genetic information or an enzyme involved in cellular metabolism.

“We are now starting to study the properties of these lone cancer cells, which could be predictive of different disease states, and that understanding could help guide therapy decisions,” said Laura S. Sasportas, a principal researcher and Ph.D. candidate in the Gambhir Lab in the department of bioengineering at Stanford University in Stanford, Calif. “The great potential of looking at circulating tumor cells (CTCs) has been limited mainly by their extreme rarity. For example, in the case of breast cancer, CTCs are estimated to be in the order of a few to a few hundred cells among billions of blood cells in a typical 7.5 milliliter blood sample from a cancer patient. In the past decade, however, CTC research has been booming due to the development of exciting new technologies that can sensitively detect and harvest those very rare cells from patient’s blood.”

For this study, researchers took breast cancer cells isolated from the blood of small animal models and imaged them using radioluminescence microscopy and SCAR along with a common molecular imaging radiotracer called F-18 fluorodeoxyglucose (FDG). The latter mirrors the exchange of energy in the presence of glucose in order to target the few hyper-metabolic cancer cells within these blood samples. Results of the research showed that less than 3 percent of CTCs in the sample indicated increased cellular metabolism compared to the parent cancer cell line. Researchers are not yet sure if this indicates an aggressive cancer cell or not. Further research and validation in clinical trials is needed to strengthen the theory.

“We hypothesize that the unexplored metabolic characterization of CTCs could provide valuable information for disease monitoring,” said Sasportas. “By evaluating the glucose metabolism of CTCs with F-18 FDG, we could better manage the care of cancer patients by improving therapy selection and therefore avoiding unnecessary treatment.”  

For more information: www.snmmi.org

Related Content

PET/CT Changes Care for 59 Percent of Suspected Recurrent Prostate Cancer Cases
News | Prostate Cancer | June 13, 2018
A recently presented investigational clinical trial evaluated the impact of 18F fluciclovine positron emission...
Nuclear imaging scan showing very good tissue delineation. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Nuclear imaging scan showing very good tissue delineation. It offers crisp overall image quality and sharply delineates the muscle and fat planes, vertebral margins and end plates, billiary radicals, renal calyces, aortic wall and papillary muscles of the heart. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Technology | PET-CT | June 05, 2018
June 5, 2018 — The U.S.
Emerging Trends in Nuclear Medicine
Feature | Nuclear Imaging | June 04, 2018 | By Jeff Zagoudis
Nuclear imaging and its various modalities have long played an important role in the diagnosis and treatment of numer
PET Imaging Agent Could Provide Early Diagnosis of Rheumatoid Arthritis

Coronal 18F-FEDAC PET/CT section of a mouse with collagen-induced arthritis. (A) On day 23 and day 37, increased uptake is noted in the front and hind paws of this mouse with collagen-induced arthritis. (B) Predictive performance of day 23 18F-FEDAC uptake for the development of clinical arthritis. ROC = receiver operating characteristic; Sn = sensitivity; Sp = specificity. Credit: Seoul National University and Ewha Womans University, Seoul, South Korea

News | PET Imaging | May 17, 2018
A novel positron emission tomography (PET) tracer developed by Korean researchers can visualize joint inflammation and...
PET Imaging Shows Protein Clumping May Contribute to Heart Failure Development
News | PET Imaging | May 11, 2018
A team led by Johns Hopkins University Researchers has discovered that protein clumps appear to accumulate in the...
News | Radiopharmaceuticals and Tracers | May 09, 2018
Blue Earth Diagnostics signed an exclusive, worldwide agreement with Scintomics GmbH, Germany, a specialist in...
Novel PET Agent Could Help Guide Therapy for Brain Diseases

Rat brain 11C‐Me‐NB1 PET images (0‐60 min) superimposed on an MRI template. Credit: SD Krämer et al., ETH Zurich, Zurich, Switzerland

News | PET Imaging | April 10, 2018
Researchers have developed a new imaging agent that could help guide and assess treatments for people with various...
The Chalk River nuclear reactor license has been renewed, but will be decommissioned by 2028.

The Chalk River nuclear isotope reactor license has been renewed, but will be decommissioned by 2028. The reactor supplies about 50 percent of the world's supply of Tc99m.

Feature | Nuclear Imaging | April 02, 2018 | Dave Fornell
April 2, 2018 – The Canadian Nuclear Safety Commission (CNSC) announced March 29 that it renewed Canadian Nuclear Lab
The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain.

This figure shows two different brains that are aligned to a common template space for comparison. The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain. CREDIT: Zachariah Reagh

News | Nuclear Imaging | March 08, 2018
As we get older, it's not uncommon to experience "senior moments," in which we forget where we parked our car or call...
Overlay Init