Feature | Computed Tomography (CT) | November 03, 2017 | By Jeff Zagoudis

Expanding Applications for Computed Tomography

This article originally ran as an introduction to the November/December 2017 Computed Tomography comparison chart. You can view the chart here

Expanding Applications for Computed Tomography

Photo courtesy of GE Healthcare

Computed tomography (CT) continues to be a workhorse modality for radiology departments and its utility keeps expanding. Below are just a few of the ways CT applications have expanded in the last 12 months.

 

Lung CT

One of the newer applications to develop for CT imaging is as a screening tool for lung cancer and other lung diseases. The application got a major boost when the U.S. Preventive Services Task Force (USPSTF) gave its approval in 2013 for annual lung CT scans for current and former smokers ages 55-80 with a 30-pack year smoking history. The American Cancer Society (ACS) also gave its approval for low-dose computed tomography (LDCT) lung cancer screening in 2013, recommending it, but reducing the upper age limit slightly to 74.

One reason that lung CT screening is increasing is that the dose required continues to go down. In July, Samsung introduced the BodyTom Elite, an updated version of its 32-slice BodyTom system that, among other applications, can perform lung CT exams under 3 mGy.

Several groups in the last 12 months have looked at applying artificial intelligence (AI) algorithms to lung CT to aid radiologists in detection of nodules or masses. In one example, Fujitsu Laboratories Ltd. of Japan shared initial results from an AI algorithm designed to retrieve similar, disease case images from a CT database of previous exams. This particular deep learning algorithm focuses on more diffuse lung diseases like pneumonia, where abnormal shadows spread through the lung in three dimensions, making identification more time-consuming. The algorithm managed 85 percent accuracy for the first five images drawn for each case.

While lung CT screening has proven its merits, there are still various populations who are unable to take advantage of it. Samsung Neurologica and the Levine Cancer Institute of the Carolinas Healthcare System worked together to launch the nation’s first mobile lung CT unit in March. The cancer center put a BodyTom CT unit inside a truck to bring lung cancer diagnosis and intervention to underserved populations across the Carolinas; the goal of the project is to eliminate common barriers to screening such as finances, drive time and lack of public transportation.

 

Cardiac CT

This year saw the introduction of the first dedicated cardiac CT scanner at the American College of Cardiology (ACC) Scientific Session and Expo in March. Developed by GE Healthcare in partnership with Israeli startup Arineta, the Cardiographe is a 64-slice scanner with 140 mm of anatomical coverage, allowing a scan of the entire heart in one rotation without stitching. A gantry speed of 0.24 seconds freezes cardiac motion to eliminate blurring and improve image quality. Other advanced features include dose reduction, iterative reconstruction and metal artifact reduction.

Spatial resolution will continue to be a moving target for CT manufacturers as they attempt to improve viewing of smaller vessels. At the 2017 Society of Cardiovascular Computed Tomography (SCCT) annual scientific meeting, Toshiba offered glimpses of a prototype scanner with a spatial resolution of 0.25 mm. The upper limit for most scanners is 0.50 mm, at which range stents can be seen inside the vessel, but the image is often blurry. With the 0.25 spatial resolution, viewers may be able to see which vendor’s stent was used, as well as individual stent struts and any broken struts.

 

FFR-CT

One of the most common cardiac applications for CT has been employing CT angiography (CTA) to diagnose patients who present with chest pain, a very unspecific symptom. While CTA does provide a noninvasive method for assessing the coronary arteries, it is less helpful in determining which lesion(s) may be problematic and require intervention. The majority of patients are sent on to the cath lab for an invasive angiogram and potentially catheter-based fractional flow reserve (FFR) measurements. In 2014, the U.S. Food and Drug Administration (FDA) approved a new technology that combines CT with virtual FFR assessment to provide both anatomical and functional assessment of the coronary arteries. FFR-CT technology has been validated in clinical trials to date, reducing the number of patients sent to the cath lab by nearly two-thirds and in turn cutting healthcare costs 33 percent.

At present, HeartFlow Inc. has released the only commercially available version of FFR-CT technology, which requires users to send scans to HeartFlow to perform the calculations and send the studies back to the hospital. This has resulted in relatively slow turnaround times, but the company is working to bring those times down.

Other companies such as Toshiba have their own FFR-CT technology in development, but in the meantime other vendors are partnering with HeartFlow to expand the technology’s reach. Most recently, Philips announced a collaboration agreement with HeartFlow to promote the latter’s analysis in conjunction with Philips’ advanced catheters for coronary FFR, instant wave-free ratio (iFR) and intravascular ultrasound (IVUS) solutions. The two companies will also work together to develop an improved cath lab X-ray angiography image-derived FFR or iFR solution, with the goal of enhancing workflow in the cath lab and improving diagnosis of coronary artery disease (CAD). Siemens Healthineers and GE also announced partnerships with HeartFlow in 2017.

 

Read the related 2018 article "New Cardiovascular CT Technology Entering the Market."

Related Content

Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
FDA Clears GE's Deep Learning Image Reconstruction Engine
Technology | Computed Tomography (CT) | April 19, 2019
GE Healthcare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) of its Deep Learning Image...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa
Four of the top pieces of content in March included news on proton therapy, including a 360 image and videos from ITN's recent visit to the Northwestern Medicine Proton Center in the Chicago suburbs. This image shows the main proton treatment room gantry at the proton center in Warrenville, Ill. Interview with Mark Pankuch, Ph.D.

Four of the top pieces of content in March included news on proton therapy, including a 360 image and videos from ITN's recent visit to the Northwestern Medicine Proton Center in the Chicago suburbs. This image shows the main proton treatment room gantry at the proton center in Warrenville, Ill.
 

Feature | April 02, 2019 | Dave Fornell, Editor and A.J. Connell
April 2, 2019 — Here is the list of the most popular content on the Imaging Technology News (ITN) magazine w
Johns Hopkins Medicine First in U.S. to Install Canon Medical's Aquilion Precision
News | Computed Tomography (CT) | March 26, 2019
March 26, 2019 — Johns Hopkins Medicine now has access to the first...
At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve).

At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve). Photo by Greg Freiherr

Feature | Cardiac Imaging | March 22, 2019 | By Greg Freiherr
Reflecting a trend toward the increased use of...
Researchers Use Radiomics to Predict Who Will Benefit from Chemotherapy
News | Radiomics | March 21, 2019
Using data from computed tomography (CT) images, researchers may be able to predict which lung cancer patients will...
HeartFlow Analysis Successfully Stratifies Heart Disease Patients at One Year
News | CT Angiography (CTA) | March 19, 2019
Late-breaking results confirm the HeartFlow FFRct (fractional flow reserve computed tomography) Analysis enables...
SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram.

SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram. Results from an international study presented at #ACC19 show that pressure readings in coronary arteries may identify locations of stenoses remaining after cardiac cath interventions.

Feature | Cardiac Imaging | March 18, 2019 | By Greg Freiherr
As many as one in four patients who undergo cath lab interventions can benefit from a technology that identifies the
Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Feature | Cardiac Imaging | March 17, 2019 | By Greg Freiherr
Virtual reality (VR) and its less immersive kin, augmented reality (AR), are gaining traction in some medical applica