Feature | May 18, 2011 | Donald Barry, Ph.D.

The Challenge for Ultrasound Imaging

The last couple of years in the United States and Europe have seen an increased focus on the cumulative patient dose received from a wide variety of X-ray devices including classical X-ray, computed tomography (CT), interventional radiology and mammography. The deleterious effects of radiation dose have received widespread coverage, and the partial answer has been a movement towards non-ionizing diagnostic imaging equipment, such as magnetic resonance imaging (MRI) and ultrasound.

The increased use of ultrasound both in diagnostic and guided applications, as well as in specific venues such as the emergency room, is well documented and continues to rise. This rapid increase is expected to continue as the newer ultrasound units, especially hand-carried and hand-held units, continue to improve and as new and better software applications for noise reduction and image enhancements become available.

The relatively low-energy acoustic waves used in ultrasound, which make for a relatively safe diagnostic imaging environment, lead to difficulties penetrating thick layers of human tissue. With approximately two-thirds of the U.S. populations estimated to be obese and other estimates showing that more than 50 percent of all abdominal scans are of technically difficult patients (typically with a BMI in excess of 30), this problem dominates the diagnostic ultrasound market in both the United States and Europe. Also, various sources estimate the average exam of a difficult patient takes 20-40 percent longer – if it can even be carried out.

The liver and other key abdominal organs can lie 4 to 5 centimeters below the surface in difficult patients. This presents great difficulties in achieving good diagnostic quality ultrasounds and places more physical strain on sonographers and radiologists. Radiologists must use a lower frequency probe to penetrate the tissue, which leads to a concomitant loss of resolution. In cases where the low-frequency probe fails, the radiologist must resort either to a more expensive and time-consuming MRI exam or a dose-producing CT exam.

The ultrasound industry has recognized this challenge and developed a number of technologies both in software and hardware to address it. Leading probe manufacturers have attacked the problem via advanced design and materials. Software suppliers have also developed targeted approaches to penetrate the deep tissue. For example, ContextVision’s newest ultrasound image enhancement product includes a directed, focused image enhancement mode. This mode allows the user to enhance deep-lying organs without over-effecting mid- and near-field structures. When combined with the newest probe technology, this image enhancement technology will alleviate some of the issues associated with ultrasound examinations of technically difficult patients.

Donald Barry is director of commercial development for ContextVision, which is an independent developer of medical imaging enhancement, analysis and processing technologies, serving leading OEMs and distributors for more than 25 years.

Related Content

The Revolution Apex intelligent computed tomography (CT) scanner

The Revolution Apex intelligent computed tomography (CT) scanner. Image courtesy of GE Healthcare.

News | RSNA | October 18, 2019
At the 2019 annual meeting of the Radiological Society of North America (RSNA 2019), Dec. 1-6 in Chicago, GE Healthcare...
An illustration of radiology department analytics data showing GE Healthcare’s business analytics software.

An illustration of radiology department analytics data showing GE Healthcare’s business analytics software.

Feature | Radiology Business | October 17, 2019 | By April Wilson
According to IBM, the world creates 2.5 quintillion bytes of data daily.
Image courtesy of Bethesda Health

Image courtesy of Bethesda Health

Feature | Radiology Business | October 17, 2019 | By Susan DeCathelineau
Few professions have experienced the dramatic changes that radiologists have over the past few years.
Using Compressed SENSE for faster MRI scans, healthcare providers can transform their radiology workflow.

Using Compressed SENSE for faster MRI scans, healthcare providers can transform their radiology workflow.

Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | October 16, 2019
Since the introduction of magnetic resonan...
Feature | Artificial Intelligence | October 16, 2019 | By Siddharth (Sid) Shah
The period between November through February is pretty interesting for the field of medical imaging — two major confe
At the annual meeting of the AHRA, Agfa Healthcare demonstrated a full-scale model of its DR 800, presenting the unit as a "game changer" for its multifunctionality.

At the annual meeting of the AHRA, Agfa Healthcare demonstrated a full-scale model of its DR 800, presenting the unit as a "game changer" for its multifunctionality.

Feature | AHRA | October 16, 2019 | By Greg Freiherr
Diversity was on display at the Association for Medical Imaging Mana...
Philips Partners With PURE on Tele-Ultrasound Program for Physicians in Rwanda
News | Ultrasound Imaging | October 09, 2019
Philips and non-profit organization PURE (Point-of-care Ultrasound in Resource-limited Environments) highlighted a tele...
Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI

Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI

Feature | Magnetic Resonance Imaging (MRI) | October 09, 2019 | By Jeff Zagoudis
Sponsored Content | Whitepapers | Clinical Trials | October 09, 2019
A 2019 N G PX REPORT