News | Treatment Planning | September 23, 2019

Patients treated at Princess Margaret Cancer Centre in Toronto, Canada, as part of comprehensive evaluation study

First Patients Treated With Machine Learning-generated Plans from RayStation 8B

September 23, 2019 — The first-ever patient radiation therapy treatments generated with machine learning in the RayStation treatment planning system (TPS) have been conducted. Patients with localized prostate cancer are being treated with the technology at the Princess Margaret Cancer Centre in Toronto, Canada, as part of a comprehensive evaluation study.

RaySearch released the machine learning features in RayStation 8B in late December 2018. This technology has been developed by RaySearch’s in-house machine learning department in collaboration with researchers at the Princess Margaret Cancer Centre and Techna Institute, crystalizing years of cutting-edge research led by medical physicist Tom Purdie, Ph.D., and computer scientist Chris McIntosh, Ph.D. The features represent the first applications of machine learning in a TPS on the radiation oncology market, according to RaySearch, producing high-quality radiation treatment plans in only minutes, without the need for any user intervention.

Since May 2019, every patient with localized prostate cancer treated at the Princess Margaret has been part of a prospective initiative under the direction of radiation oncologist Alejandro Berlin, M.D. The initiative was launched after observing excellent clinical results in a retrospective evaluation study conducted during 2018, in which machine learning plans were preferred or deemed equivalent to previous manual plans based on three blinded expert reviewers in 94 percent of cases.

The ongoing phase of this study presents physicians with two blinded treatment plans: a manually generated plan and a machine learning plan. The selected plan undergoes standard peer-review and quality assurance, and then patients proceed to treatment delivery with the preferred plan.

This worldwide endeavor will provide unique data to quantify the performance and preferability of machine learning plans in the real-world environment.

Berlin said, “It has been really exciting for the team to help materialize this machine learning advancement in the radiation oncology field, including deployment into the clinical realm. Our positive results to date validate our observations about the robustness of this planning solution”.

For more information: www.raysearchlabs.com


Related Content

News | Radiology Imaging

Feb. 12, 2026 — Siemens Healthineers and Mayo Clinic are expanding their strategic collaboration to enhance patient care ...

Time February 13, 2026
arrow
Feature | Cardiac Imaging | Kyle Hardner

Advances in coronary CT angiography (CCTA) have reached the point where image quality and AI capabilities are creating ...

Time February 06, 2026
arrow
News | Ultrasound Women's Health

Feb. 5, 2026 — BrightHeart, a global provider of AI-driven prenatal ultrasound, has announced the availability of its B ...

Time February 05, 2026
arrow
News | Lung Imaging

Feb. 3, 2026 — RevealDx, a leader in the characterization of lung nodules, recently announced FDA clearance of RevealAI ...

Time February 04, 2026
arrow
News | Radiation Therapy

Feb. 4, 2026 — On World Cancer Day (02.04.26), the American Society for Radiation Oncology (ASTRO) and the European ...

Time February 04, 2026
arrow
News | Radiology Imaging

Feb. 4, 2026 — The Royal College of Radiologists (RCR) has issued its initial reaction to the British government's ...

Time February 04, 2026
arrow
News | FDA

Jan. 29, 2026 — GE HealthCare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for MIM ...

Time February 03, 2026
arrow
News | Radiopharmaceuticals and Tracers

Jan. 29, 2026 — The American Society for Radiation Oncology (ASTRO) has launched a national program creating Authorized ...

Time January 30, 2026
arrow
News | Radiation Oncology

Jan. 27, 2026 — Researchers at the Icahn School of Medicine at Mount Sinai, in collaboration with other leading ...

Time January 29, 2026
arrow
News | Radiology Imaging

Jan.26, 2026 — SimonMed Imaging has unveiled an updated brand and the launch of SimonMed Longevity, a new division ...

Time January 27, 2026
arrow
Subscribe Now