News | Ultrasound Imaging | May 28, 2019

Interdisciplinary project seeks to improve outcomes for high-risk prostate cancer patients

Improved Imaging for Prostate Cancer Could Lead to More Effective Treatment

The picture shows that time series signal is extracted from a series of ultrasound frames for classification. Each patch across a number of frames inside the prostate is classified into either cancerous or normal tissue. The image at the lower right corner shows the overall result for those frames. Image courtesy of Pingkun Yan and researchers from NIH, University of British Columbia and Queens University.


May 28, 2019 — Engineers at Rensselaer Polytechnic Institute are working to improve imaging methods in order to make medicine more precise and personalized. This work will be a critical component of a new interdisciplinary research project funded with $1.4 million from the National Institutes of Health (NIH) that seeks to improve radiation therapy for high-risk prostate cancer patients.

“In order to do precision medicine, you need to see better,” said Pingkun Yan, assistant professor of biomedical engineer at Rensselaer. “If you cannot see, you can’t do anything.”

Yan’s expertise in imaging will support researchers from University of Texas Southwestern, led by Jing Wang, associate professor of radiation oncology, who are currently conducting a clinical trial using an approach known as stereotactic body radiation therapy (SBRT), which delivers high doses of radiation directly to a tumor.

Multiple clinical trials have shown that high doses of radiation to prostate tumors can result in improved cancer outcomes, Yan said, but delivery of that radiation must be localized and precise to protect other healthy tissue nearby.

One of the challenges with SBRT is that the prostate can move and deform during delivery. To make sure the accurate dose is being given in the right location, a reliable and accurate tumor tracking method is needed. But traditional ultrasound technology is not sensitive enough to differentiate between the prostate tumor and healthy tissue.

That’s where Yan comes in. He and his team will develop an imaging method to help researchers distinguish between the healthy tissue and the tumor, so they can more accurately administer the radiation doses.

More specifically, Yan will integrate SBRT with a temporal enhanced ultrasound method (TeUS) that he previously developed through a collaboration with the University of British Columbia, Queens University and NIH. TeUS combines a series of ultrasound images, over time, so that researchers and doctors can visually separate the tumor from the healthy organ.

“The tumor and the healthy tissue move a little differently. By observing that area over time, we extract a difference,” he said.

Deep-learning techniques employed by Yan’s team will make this technique possible.

“We could obtain these images in the past, but didn’t have a good tool to analyze those images. With deep learning, with artificial intelligence, we are now able to decode the information and make it usable,” Yan said.

This research is a prime example of the work being done by Yan and other members of the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer. Yan is also part of a Cancer Research Group within the center.

Yan also recently received a Bench-to-Bedside award grant, also from NIH, to focus on improving cancer detection through ultrasound imaging. He hopes the results of these collaborative, interdisciplinary projects will improve treatment for all patients.

For more information: dial.rpi.edu


Related Content

News | Point-of-Care Ultrasound (POCUS)

June 17, 2025 — Royal Philips has announced the global launch of the Flash Ultrasound System 5100 POC — a new point-of ...

Time June 19, 2025
arrow
News | Bone Densitometry Systems

June 19, 2025 — Naitive Technologies has published results demonstrating the diagnostic performance of its AI-powered ...

Time June 18, 2025
arrow
News | Lung Imaging

June 18, 2025 — Exo recently announced that now included on its Exo Iris is the first ever FDA 510(k) cleared AI for ...

Time June 18, 2025
arrow
News | Digital Pathology

June 11, 2025 — Diagnostic laboratory leaders view digital pathology and artificial intelligence (AI) as pivotal to ...

Time June 12, 2025
arrow
News | Lung Imaging

June 11, 2025 — To prepare healthcare workforces and providers for an AI-driven future, Qure.ai has expanded its Global ...

Time June 11, 2025
arrow
News | Radiology Imaging

June 10, 2025 — CIVIE has announced the official launch of RadPod, an AI-driven, on-demand radiology platform designed ...

Time June 10, 2025
arrow
News | Ultrasound Imaging

June 4, 2025 — RadNet, Inc., a provider of high-quality, cost-effective diagnostic imaging services and digital health ...

Time June 09, 2025
arrow
News | Mammography

June 9, 2025 — A new independent, peer-reviewed study published in the journal Clinical Breast Cancer reinforces the ...

Time June 09, 2025
arrow
News | Imaging Software Development

June 05, 2025 — Nano-X Imaging Ltd. has announced that its deep-learning medical imaging analytics subsidiary, Nanox AI ...

Time June 05, 2025
arrow
News | Prostate Cancer

June 5, 2025 – Artera, the developer of multimodal artificial intelligence (MMAI)-based prognostic and predictive cancer ...

Time June 05, 2025
arrow
Subscribe Now