News | June 11, 2015

Researchers hope to use technology to guide deep brain stimulation for Parkinson's patients, among others

Duke Medicine, MRI, deep brain stimulation, DBS, pathways, Nandan Lad

Image courtesy of Duke Medicine


June 11, 2015 - Scientists at Duke Medicine have produced a 3-D map of the human brain stem at an unprecedented level of detail using magnetic resonance imaging (MRI) technology.

In a study published June 3 in Human Brain Mapping, the researchers unveiled an ultra high-resolution brain stem model that could better guide brain surgeons treating conditions such as tremors and Parkinson's disease with deep brain stimulation (DBS).

The new 3-D model could eliminate risky trial-and-error as surgeons implant electrodes - a change akin to trading an outdated paper road atlas for a real-time GPS.

"On the conventional MRI that we take before surgery, the thalamus looks like a gray mass where you can see only the borders," said neurosurgeon Nandan Lad, M.D., Ph.D., director of the Duke NeuroOutcomes Center and an author of the paper. "Now we will have actual detail. With this map, for the first time we're able to see the thalamus and that underlying circuitry that we are modulating."

Many neurosurgeons currently rely on lower resolution computed tomography (CT) and MRI scans and geographic coordinates relative to the planes of the brain to guide them when placing electrodes into the thalamus. They are targeting a circuit called the dentatorubrothalamic tract or DRT (depicted as an X-shaped pathway in the accompanying image), Lad said.

Surgeons must often remove and reinsert electrodes and test frequencies to find the spots inside the thalamus where, for instance, the electric current subdues the hands of a patient with debilitating tremors. This indirect targeting is the standard of care for DBS, but comes with risk. Moving an electrode requires another pass through delicate tissue, and complications from DBS can include hemorrhage, seizure or memory problems.

"This map will potentially help us reach the optimal target the first time," Lad said. "It could eliminate trial and error and make the surgery safer."

The map was produced from a 10-day scan of a healthy donor's postmortem brain stem in a 7-Tesla MRI system, and then converted into a 3-D model that can be proportionally scaled to fit a person's unique brain anatomy using a high-performance computing cluster.

"These images are 1,000 times more detailed than a clinical MRI," said G. Allan Johnson, senior author of the paper and director of the Duke Center for In Vivo Microscopy where the brain stem was scanned. "You can actually see the nerve fibers in the brain, how they're crossing, and the subtleties of contrast between gray and white matter in the brain far beyond what a clinical scan could offer."

To test the accuracy of the model, the researchers conducted a retrospective study of 12 patients who had already been treated successfully for tremors using DBS. The researchers used the 3-D model to predict the best placement for the electrodes in each patient. The predictive computer model and the actual successful electrode placements correlated for 22 of 24 electrodes in the dozen patients, the study showed.

The researchers will soon begin a prospective study using the 3-D model to guide DBS surgery.

"As time goes on, imaging will only continue to get better," Lad said. "We are well-equipped and at the cutting edge of understanding how to apply this technology, and will be in an even better position to treat more patients with fewer side effects."

The Duke team will also pursue high resolution imaging of other circuits in the brain, brain stem and spinal cord to develop new treatments for other conditions.

"We now have a guide to be able to visualize these complex neuronal connections that would otherwise be impossible to see," said Evan Calabrese, Ph.D., the lead author of the paper who engineered the 3-D model. "This will help us continue to explore applications for treatments of Alzheimer's disease, neuropathic pain, depression and even obsessive compulsive disorders."

For more information: www.dukemedicine.org


Related Content

News | PET Imaging

April 24, 2024 — A new study from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare ...

Time April 24, 2024
arrow
News | Radiology Business

April 23, 2024 — A diverse writing group—lead by authors at the University of Toronto—have developed an approach for ...

Time April 23, 2024
arrow
News | Radiology Business

April 17, 2024 — VISTA.AI announced the appointment of Daniel Hawkins as President and CEO. The company is pioneering AI ...

Time April 17, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

April 17, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with the ...

Time April 17, 2024
arrow
News | Radiology Business

April 4, 2024 — FUJIFILM Healthcare Americas Corporation, a leading provider of diagnostic and enterprise imaging ...

Time April 04, 2024
arrow
News | Population Health

April 4, 2024 — A new study found increased coronary vessel wall thickness that was significantly associated with ...

Time April 04, 2024
arrow
News | Radiation Oncology

April 2, 2024 — In a 10-center study, microwave ablation offered progression free survival rates and fewer complications ...

Time April 02, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | FDA

March 27, 2024 — SyntheticMR announced that its next-generation imaging solution, SyMRI 3D, has received FDA 510(k) ...

Time March 27, 2024
arrow
News | ACR

March 21, 2024 — The Advanced Research Projects Agency for Health (ARPA-H) has appointed American College of Radiology ...

Time March 21, 2024
arrow
Subscribe Now