Carl Zeiss MicroImaging Inc., a leading provider of microscopy solutions for a variety of research, clinical and industrial applications, introduces its Laser TIRF 3 microscope system, designed to enable visualization of near-cell membrane dynamic processes while maintaining optimum specimen incubation conditions.

The Laser TIRF 3 also allows observation of single molecule dynamic processes in cell-free systems and, in combination with other techniques such as atomic force microscopy (AFM), the new microscope provides a complete solution for users in the life sciences, biochemistry, molecular biology and biophysics arenas.
The Laser TIRF 3 maintains Carl Zeiss' long-standing commitment to system flexibility. A range of incubation options maintain viable conditions for live cell experiments. Together with the 'definite focus' module, users can be assured of accurate quantitative data over long time periods. The new laser module may be equipped with up to four solid-state lasers, is AOTF-controlled (acousto-optical tuneable filter) and may be operated entirely from the AxioVision software interface.
The TIRF slider is available in two versions; either manual or fully-motorized and software controllable. The motorized version permits a given illumination angle to be set with significantly greater accuracy and speed than other current systems and the reproducible angle setting results in reproducible penetration depths for the light beam. Together with the corrected beam-path and special filter sets, the apochromatically-corrected optics of the TIRF slider guarantee maximum image quality.
AOTF control and angle setting are integrated into the 'fast image acquisition' module of the AxioVision software, enabling significantly more high resolution images to be acquired within any given timeframe.
The new Laser TIRF 3 builds on the attributes of the Laser TIRF, the first microscope to offer the combination of TIRF and transmitted-light contrasting techniques, such as DIC and brightfield, and enable the sequential recording of image pairs. By selectively exciting cellular fluorophores adsorbed, adhered, or bound to the surface and combining it with conventional epi-fluorescence, researchers can relate surface effects to internal cellular structures.

For more information: www.zeiss.com/micro


Related Content

News | Breast Imaging

May 1, 2024 — After the issuance of updated breast screening recommendations by the U.S. Preventive Services Task Force ...

Time May 01, 2024
arrow
News | Ultrasound Imaging

April 30, 2024 — Best Nomos, a TeamBest Global Company, is launching its most modern, highly innovative Compact SONALIS ...

Time April 30, 2024
arrow
News | PET Imaging

April 24, 2024 — A new study from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare ...

Time April 24, 2024
arrow
News | Radiology Business

April 23, 2024 — A diverse writing group, led by authors at the University of Toronto, have developed an approach for ...

Time April 23, 2024
arrow
News | FDA

April 23, 2024 — Royal Philips , a global leader in health technology, today announced its Philips Zenition 30 mobile C ...

Time April 23, 2024
arrow
News | Ultrasound Imaging

April 22, 2024 — GE HealthCare announced the launch of the Voluson Signature 20 and 18 ultrasound systems, which ...

Time April 22, 2024
arrow
News | Lung Imaging

April 17, 2024 — A Medicare policy requiring primary care providers (PCPs) to share in the decision-making with patients ...

Time April 17, 2024
arrow
News | Radiology Business

April 17, 2024 — VISTA.AI announced the appointment of Daniel Hawkins as President and CEO. The company is pioneering AI ...

Time April 17, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

April 17, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with the ...

Time April 17, 2024
arrow
News | ACR

April 15, 2023 — The American College of Radiology (ACR) released an update to its ACR Appropriateness Criteria (ACR AC) ...

Time April 13, 2024
arrow
Subscribe Now