News | May 07, 2012

WBR Halves Dose, Acquisition Time in Gated SPECT Studies

Wide Beam Reconstruction Protocol Addresses Growing Concern About Radiation Exposure

May 7, 2012 — A software program for the reconstruction of nuclear medicine images, Wide Beam Reconstruction (WBR) reduces the required radiopharmaceutical dose and image acquisition time by 50 percent for diagnostic quality myocardial perfusion imaging (MPI) single photon emission computed tomography (SPECT) compared to conventional techniques, according to a new study published in the March/April 2011 issue of the Journal of Nuclear Cardiology.

Researchers found that with either half the dose of Tc-99m sestamibi or half the acquisition time, WBR resulted in image quality superior to processing with today’s widely used ordered subset expectation maximization (OSEM) software. The study was conducted at St. Luke’s-Roosevelt Hospital and Columbia University College of Physicians and Surgeons in New York City.

“The escalating radiation levels of today’s advanced imaging exams is causing growing concern among the medical community and the public at large,” said Gordon DePuey, M.D., lead researcher and director of nuclear medicine at St. Luke’s-Roosevelt Hospital and professor of radiology at Columbia University. “There is significant pressure to minimize radiation dose, particularly for MPI nuclear SPECT exams.” In addition, the ongoing shortages of radiopharmaceuticals due to nuclear reactor downtime compound the need to minimize dosage.

Developed by UltraSPECT, based in Haifa, Israel, WBR is a reconstruction algorithm incorporating depth-dependent resolution recovery and image noise modeling to deliver a higher quality image with lower count density data. In the new MPI study, researchers evaluated images from 156 patients undergoing myocardial perfusion SPECT with a standard full-time acquisition protocol processed with routine OSEM methods. The same 156 patients underwent half-time acquisition, and the data were processed with the WBR algorithm. The images were acquired both at rest and following exercise or pharmacologic stress.

A second study group of 160 patients received half of the standard radiopharmaceutical dose, with images acquired for the full standard acquisition time. These were processed using WBR only. All images were rated for quality by two observers unaware of the acquisition and processing methods. For both the lower dose and abbreviated acquisition time images, grading parameters included myocardial count density and uniformity, endocardial and epicardial edge definition, visualization and definition of the right ventricle, and background noise. For the abbreviated acquisition time images only, SPECT perfusion defects also were examined.

Overall, WBR half-time and half-dose image quality was judged as superior to OSEM image quality in both arms of the study. There was no statistically significant difference between the two SPECT protocols in identifying the extent or severity of perfusion defects.

“The results of this study demonstrate that WBR is a powerful means of reducing dose without sacrificing image quality and diagnostic accuracy. I would recommend that all nuclear medicine laboratories adopt some strategy for reducing patient radiation exposure incorporating WBR or others techniques that have proven effective,” said DePuey.

For more information visit: www.ultraspect.com

Related Content

GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Life Image and Mendel.ai Bringing Artificial Intelligence to Clinical Trial Development
News | Artificial Intelligence | November 15, 2018
Life Image and Mendel.ai announced a new strategic partnership that will facilitate the adoption and enhancement of...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...
MEDraysintell Projects Increasing Mergers and Acquisitions in Nuclear Medicine
News | Nuclear Imaging | November 07, 2018
With the recent announcement by Novartis to acquire Endocyte , interest from the conventional pharmaceutical industry...
Proton Therapy for Pediatric Brain Tumors Has Favorable Cognitive Outcomes
News | Proton Therapy | November 06, 2018
Proton therapy treatment for pediatric brain tumor patients is associated with better neurocognitive outcomes compared...