News | Lung Cancer | May 09, 2017

Third Annual Data Science Bowl Winners Advance Low-Dose CT Lung Cancer Screening

Booz Allen Hamilton and Kaggle competition nets nearly 18,000 algorithms aimed at unlocking the lifesaving potential of cancer screening

Third Annual Data Science Bowl Winners Advance Low-Dose CT Lung Cancer Screening

May 9, 2017 — Management consulting firm Booz Allen Hamilton and data science company Kaggle recently announced the winners of the third annual Data Science Bowl, a competition that harnesses the power of data science and crowdsourcing to tackle some of the world’s toughest problems. This year’s challenge brought together nearly 10,000 participants from across the world. Collectively they spent more than an estimated 150,000 hours and submitted nearly 18,000 algorithms — all aiming to help medical professionals detect lung cancer earlier and with better accuracy.

2017 Data Science Bowl winners include:

  • First Place: Liao Fangzhou and Zhe Li, two researchers from China’s Tsinghua University who have no formal medical background but were able to apply their analytics skills to an unfamiliar but challenging area of research.
  • Second Place: Julian de Wit and Daniel Hammack, both software and machine learning engineers based in the Netherlands. Julian came in third in the Data Science Bowl 2016.
  • Third Place: Team Aidence, members of which work for a Netherlands-based company that applies deep learning to medical image interpretation.

Lung cancer is the most common type of cancer worldwide, affecting nearly 225,000 people each year in the United States alone. Low-dose computed tomography (CT) is a breakthrough technology for early detection, with the potential to reduce lung cancer deaths by 20 percent. But, the technology must overcome a relatively high false-positive rate.

Using anonymized high-resolution lung scans in one of the largest datasets to be made publicly available, provided by the National Cancer Institute (NCI), participants created algorithms that can improve lung cancer screening technology. The participants created algorithms that can accurately determine when lesions in the lungs are cancerous and dramatically decrease the false positive rate of current low-dose CT technology.

Top teams will present their winning solutions at the 2017 GPU Technology Conference, May 8-11 in San Jose, Calif., hosted by NVIDIA, a Data Science Bowl sponsor.

“Reducing the false-positive rate of low-dose CT scans is a critical step in improving the accuracy of CT screening of lung cancer and having a positive impact on public health,” said Keyvan Farahani, program director, National Cancer Institute, who provided scientific guidance regarding the competition’s design and datasets. “NCI is committed to working closely with the scientific community, the [U.S.] Food and Drug Administration, and other stakeholders to utilize this year’s top-ranking solutions to further advance the field of lung cancer screening.”

For more information: www.datasciencebowl.com

Related Content

Videos | Computed Tomography (CT) | July 19, 2019
Quynh Truong, M.D., MPH, associate professor of radio
Low Doses of Radiation Promote Cancer-capable Cells
News | Radiation Dose Management | July 18, 2019
Low doses of radiation equivalent to three computed tomography (CT) scans, which are considered safe, give cancer-...
New Lung Ambition Alliance Aims to Double Five-year Lung Cancer Survival by 2025
News | Lung Cancer | July 17, 2019
The International Association for the Study of Lung Cancer (IASLC), Guardant Health, the Global Lung Cancer Coalition (...
Example of an intentionally truncated CT image

Figure 1: Example of an intentionally truncated CT image. The truncation percentage was calculated as the ratio of the patient border touching the field of view to the total patient border (red/(read+blue)). Image courtesy of Qaelum.

Feature | Radiation Dose Management | July 15, 2019 | Niki Fitousi, Ph.D., and An Dedulle
One of the main benefits of a radiation dose management system is the possibility to automatically generate alerts when...
Routine scan of abdomen pelvis taken with the UW-Madison’s Revolution 256 CT scanner using the FDA-cleared reconstruction algorithm, called TrueFidelity.

Routine scan of abdomen pelvis taken with the UW-Madison’s Revolution 256 CT scanner using the FDA-cleared reconstruction algorithm, called TrueFidelity. UW-Madison was the first site in the U.S. to get this technology. Its use is now being integrated into UW CT protocols. Image courtesy of Timothy P. Szczykutowicz

Feature | Computed Tomography (CT) | July 12, 2019 | By Greg Freiherr
When providers develop their own imaging protocols, they are wasting time and money, according to...
Mednax National Cardiac Centers of Excellence Program Highlighted at SCCT 2019
News | CT Angiography (CTA) | July 11, 2019
Mednax Inc. and Mednax Radiology Solutions announced that Chief Medical Officer Ricardo C. Cury, M.D., FSCCT, will...
Achenbach to Receive Inaugural 2019 Stephan Achenbach Pioneer Award in Cardiovascular CT
News | Cardiac Imaging | July 10, 2019
The Society of Cardiovascular Computed Tomography (SCCT) will present Stephan Achenbach, M.D., FSCCT with the inaugural...
Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy
News | Radiation Therapy | July 09, 2019
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to...
Jonathon Leipsic Awarded 2019 DeHaan Award for Innovation in Cardiology
News | Cardiac Imaging | July 08, 2019
Jonathon A. Leipsic, M.D., FSCCT, is the recipient of the 2019 DeHaan Award for Innovation in Cardiology, announced by...