News | Contrast Media | July 05, 2016

Study Finds No Association Between Gadolinium Contrast and Nervous System Disorder

Patients who did not undergo gadolinium-enhanced MRI had same rate of disorder development as those who did

MRI, gadolinium contrast, Parkinsonism, nervous system disorder, Blayne Welk, Western University

July 5, 2016 — A study appearing in the July 5 issue of JAMA assessed the association between gadolinium exposure and parkinsonism, a degenerative disorder of the central nervous system characterized by tremor and impaired muscular coordination. The study was conducted by Blayne Welk, M.D., M.Sc., of Western University, London, Canada, and colleagues.

Gadolinium-based contrast agents are used for enhancement during magnetic resonance imaging (MRI). Safety concerns have emerged over retained gadolinium in the globus pallidi (an area of the brain). Neurotoxic effects have been seen in animals and when gadolinium is given intrathecally (a type of method for administering a drug) in humans. Consequences of damage to the globus pallidi may include parkinsonian symptoms. For this study, multiple linked administrative databases from Ontario, Canada were used. All patients older than 66 years who underwent an initial MRI between April 2003 and March 2013 were identified. Patients who were exposed to gadolinium-enhanced MRIs were compared with patients who received non-gadolinium-enhanced MRIs.

Of the 246,557 patients undergoing at least one MRI (not of the brain or spine) during the study period, 99,739 (40.5 percent) received at least one dose of gadolinium. Among patients who underwent gadolinium-enhanced MRIs, 81.5 percent underwent a single study, and 2.5 percent underwent 4 or more gadolinium-enhanced studies. Incident parkinsonism developed in 1.2 percent of unexposed patients and 1.2 percent of those exposed to gadolinium. No significant association between gadolinium exposure and parkinsonism was found.

“This result does not support the hypothesis that gadolinium deposits in the globus pallidi lead to neuronal damage manifesting as parkinsonism. However, reports of other nonspecific symptoms (pain, cognitive changes) after gadolinium exposure require further study,” the authors wrote.

 

Related Gadolinium Safety Concern Articles

Gadolinium May Remain in Brain after Contrast MRI

MRIs During Pregnancy Are Safe, But Gadolinium Scans May Increase Risk to Fetus

ACR Manual on Contrast Media Addresses FDA Gadolinium Safety Concerns

Even High Doses of Gadolinium-Based Contrast Agents Doesn't Cause NSF

 

For more information: www.jama.jamanetwork.com

Related Content

An example of a HeartFlow FFR-CT image showing the blood flow through what looked like a significant blockage on CT angiography alone, actually was not flow-limiting based on computational fluid dynamics. Use of the technology was supposed to reduce the number of diagnostic catheterizations in the FORECAST trial, but the costs of FFR-CT were not offset enough to show cost savings.

An example of a HeartFlow FFR-CT image showing the blood flow through what looked like a significant blockage on CT angiography alone, actually was not flow-limiting based on computational fluid dynamics. Use of the technology was supposed to reduce the number of diagnostic catheterizations in the FORECAST trial, but the costs of FFR-CT were not offset enough to show cost savings.

Feature | CT Angiography (CTA) | October 23, 2020
October 22, 2020 – In the FORECAST randomized clinical trial, the use of ...
This illustration show the complexity of the data obtained from one single patient with moderate/severe traumatic brain injury. Different imaging approaches and techniques have their own unique sensitivity in assessing different aspects of neuroanatomy and neuropathology. What can be seen on images also changes with time since injury. Data from comprehensive clinical and functional assessments using a range of other tools is also important for evaluating patient outcome. Through data harmonization and large

This illustration show the complexity of the data obtained from one single patient with moderate/severe traumatic brain injury. Different imaging approaches and techniques have their own unique sensitivity in assessing different aspects of neuroanatomy and neuropathology. What can be seen on images also changes with time since injury. Data from comprehensive clinical and functional assessments using a range of other tools is also important for evaluating patient outcome. Through data harmonization and large-scale analyses of data combined across multiple research sites, the ENIGMA Brain Injury will develop and test methods and procedures for making sense of the complexity in this data. Images courtesy of Olsen et al., Brain Imaging and Behavior, 2020

News | Magnetic Resonance Imaging (MRI) | October 23, 2020
October 23, 2020 — Trau...
The fMRI hyperscanning environment.

(A) The fMRI hyperscanning environment. The clinician (1) and patient (2) were positioned in two different 3T MRI scanners. An audio-video link enabled online communication between the two scanners (3), and video images were used to extract frame-by-frame facial expression metrics. During simultaneous acquisition of blood oxygen level–dependent (BOLD)–fMRI data, the clinician used a button box (4) to apply electroacupuncture (EA) treatment (real/sham, double-blind) to the patient (5) to alleviate evoked pressure pain to the leg (6; Hokanson cuff inflation). Pain and affect related to the treatment were rated after each trial. (B) Study overview. After an initial behavioral visit, each individual participated in a Clinical-Interaction (hyperscan preceded by a clinical intake) and No-Interaction condition (hyperscan without a preceding intake), in a counterbalanced order, with two different partners. (C) Experimental protocol. Each hyperscan was composed of 12 repeated trials (four verum EA, four sham EA, and four no treatment) in a pseudo-randomized order. After a resting period (far left), both participants were shown a visual cue to indicate whether the next pain stimulus would be treated (green frame) or not treated (red frame) by the clinician. These cues prompted clinicians prepare to either apply or not apply treatment while evoking corresponding anticipation for the patient. Following the anticipation cue, moderately painful pressure pain was applied to the patient’s left leg, while the clinician applied or did not apply treatment, respectively. After another resting period, participants rated pain (patients), vicarious pain (clinicians), and affect (both) using a visual analog scale (VAS).

News | Clinical Trials | October 22, 2020
October 22, 2020 — The potential impact of the patient-clinician relationship on a patient's response to treatment is
The FDA clearance, Quantib’s 6th to date, marks the first time a comprehensive AI prostate solution will be available to radiologists in the United States
News | Prostate Cancer | October 21, 2020
October 21, 2020 — Quantib, a market leader in...
Lesion was originally reported as indeterminate enhancing mass, and outside report recommended biopsy. Classic features of benign hemangioma are shown. Error was attributed to faulty reasoning. A, Axial MR image obtained 5 minutes after contrast agent administration shows peripheral nodular discontinuous enhancement. B, Axial MR image obtained 10 minutes after contrast agent administration shows centripetal progression of enhancement (arrow). C, Axial fast imaging employing steady-state acquisition (FIESTA)

Lesion was originally reported as indeterminate enhancing mass, and outside report recommended biopsy. Classic features of benign hemangioma are shown. Error was attributed to faulty reasoning. A, Axial MR image obtained 5 minutes after contrast agent administration shows peripheral nodular discontinuous enhancement. B, Axial MR image obtained 10 minutes after contrast agent administration shows centripetal progression of enhancement (arrow). C, Axial fast imaging employing steady-state acquisition (FIESTA) MR image shows lesion is homogeneously hyperintense compared with liver parenchyma. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Magnetic Resonance Imaging (MRI) | October 21, 2020
October 21, 2020 — According to an artic...
Flowchart of patient inclusion and exclusion.

Figure 1. Flowchart of patient inclusion and exclusion.

News | Coronavirus (COVID-19) | October 20, 2020
October 20, 2020 — A new multi-institutional study published in the journal ...
Ezra, a NY-based startup transforming early cancer screening using magnetic resonance imaging (MRI), announced that it has received FDA 510(k) premarket authorization for its Artificial Intelligence, designed to decrease the cost of MRI-based cancer screening, assisting radiologists in their analysis of prostate MRI scans. It is the first prostate AI to be cleared by the FDA.
News | Artificial Intelligence | October 20, 2020
October 20, 2020 — Ezra, a NY-based startup transforming early cancer screening using...
Lesion was originally reported as indeterminate enhancing mass, and outside report recommended biopsy. Classic features of benign hemangioma are shown. Error was attributed to faulty reasoning. A, Axial MR image obtained 5 minutes after contrast agent administration shows peripheral nodular discontinuous enhancement. B, Axial MR image obtained 10 minutes after contrast agent administration shows centripetal progression of enhancement (arrow). C, Axial fast imaging employing steady-state acquisition (FIESTA)

56-Year-Old Woman With Benign Hemangioma: Lesion was originally reported as indeterminate enhancing mass, and outside report recommended biopsy. Classic features of benign hemangioma are shown. Error was attributed to faulty reasoning. A, Axial MR image obtained 5 minutes after contrast agent administration shows peripheral nodular discontinuous enhancement. B, Axial MR image obtained 10 minutes after contrast agent administration shows centripetal progression of enhancement (arrow). C, Axial fast imaging employing steady-state acquisition (FIESTA) MR image shows lesion is homogeneously hyperintense compared with liver parenchyma.

News | Magnetic Resonance Imaging (MRI) | October 16, 2020
October 16, 2020 —