News | Radiation Therapy | November 03, 2015

Study Finds Gold Nanoparticles Boost Radiation Therapy Effectiveness

Researchers discover element boosts photoelectric effect of radiotherapy, cutting off blood supply to tumors

gold nanoparticles, GNP, radiation therapy boost, AAPM, Medical Physics

November 3, 2015 — Gold nanoparticles (GNPs) can increase the effectiveness of radiation therapy by killing blood vessels that feed cancerous tumors, suggests a new study. The study was published in the current issue of Medical Physics, the monthly journal of the American Association of Physicists in Medicine (AAPM).

Researchers used simulations to assess how GNPs injected into tumors act as vascular disrupting agents, which combat cancer by cutting off blood supply to the tumor. They determined that GNPs get wedged in quickly-growing and therefore vulnerable blood vessels and, when irradiated, rapidly cause the death of those vessels, choking the tumor. They assessed GNPs’ effect on three types of radiation therapy: kV photons, MV photons and proton therapy.

“Our research suggests GNPs can boost the effectiveness of radiation therapy by killing off some of the tumor-feeding blood vessels quickly, before the tumor has the chance to grow new blood vessels,” said Yuting Lin, Ph.D., a medical physics resident with the Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston. “We found that while GNPs cause the largest boost to kV photons, they also can significantly improve radiosensitization for MV photon and proton therapy, especially if the GNPs can be targeted to attach to the vessel walls.”

Gold has a high atomic number, meaning GNPs are more likely to boost the photoelectric effect of radiation therapy, in which electrons are released from the atom and deposit their energy into the surrounding tissue. The simulation shows that when GNPs wedged in blood vessels are irradiated, they produce large amounts of low energy electrons that quickly kill off the nearby tissue. This rapid cell death, known as apoptosis, cuts off part of the blood supply to the tumor. Like all tissue, tumors need a blood supply to grow and thrive.

In the study, researchers looked at 20 Au-mg/g GNP blood concentrations distributed in the blood vessel wall. They determined that these GNP particles increased the radiation dose in the blood vessel wall by 43 percent of the prescribed dose for 250 kVp photons, 1 percent for 6 MV photons and .1 percent for protons. When GNPs are wedged in the inner vascular wall, the dose can rise up to 207 percent of the prescribed dose for 250 kVp photons, 4 percent for 6 MV photons and 2 percent for protons. While the overall increase in dose was small, the high doses around the GNPs could potentially disrupt the vasculature.

Researchers note that if GNPs are designed to actively accumulate in the tumor blood vessel walls, the damage could be increased significantly.

The use of GNP as a radiosensitizer in humans is in early trials and likely will not be widely available for patients for five years or so.

Co-authors of the study in addition to Lin are: Harald Paganetti, Ph.D., Massachusetts General Hospital and Harvard Medical School; Stephen J. McMahon, Ph.D., Queen’s University Belfast, Massachusetts General Hospital and Harvard Medical School; and Jan Schuemann, Ph.D., Massachusetts General Hospital and Harvard Medical School.

For more information: www.aapm.org

Related Content

Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Amar Kishan, M.D.

Amar Kishan, M.D.

News | Prostate Cancer | September 11, 2018
UCLA researchers have discovered that a combination of high doses of...
Videos | Radiation Therapy | September 07, 2018
A discussion with Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke University Clinical Imaging Physics Gr
Boston Scientific to Acquire Augmenix Inc.
News | Patient Positioning Radiation Therapy | September 07, 2018
Boston Scientific has entered into a definitive agreement to acquire Augmenix Inc., a privately-held company which has...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
Non-Canonical Strategy May Improve Cancer Radiotherapy
News | Radiation Therapy | August 29, 2018
August 29, 2018 — Although the success or failure of...