News | Radiation Therapy | January 03, 2018

Study Compares Radiosurgery and Whole-Brain Radiation in Lung Cancer Patients With Multiple Brain Metastases

Results indicate the brain receives less dose with radiosurgery, even when treating 10 or more lesions

Study Compares Radiosurgery and Whole-Brain Radiation in Lung Cancer Patients With Multiple Brain Metastases

January 3, 2018 — Although targeted therapies have produced dramatic advances in the ability to control some types of advanced lung cancer, growth of the disease in the brain remains a major problem. Radiation is often used to treat deposits in the brain, but the best technique to deliver radiation can be controversial. Whole-brain radiation therapy, as its name suggest, treats the entire brain but can be associated with notable cognitive side effects. Another strategy, radiosurgery, directs highly-focused radiation only to the sites of metastasis, largely sparing the normal brain.

The challenge has been to define in which circumstances each technique is best. The debate has centered on the number of brain metastases, with the field generally agreeing that with three or fewer deposits, radiosurgery is the preferred approach, and then switching to the use of whole-brain radiation to treat four or more deposits.

A University of Colorado Cancer Center study published in the Journal of Thoracic Oncology explores the use of radiosurgery in advanced lung cancer patients with four or more brain lesions – in some cases, dramatically more than four lesions – and shows that in a subset of patients, radiosurgery may be the best choice even when the number of brain lesions far exceeds the established three-lesion threshold.

In addition to discovering if radiosurgery could be effective in patients with greater than four brain lesions, the clinical study hoped to answer two more important questions — namely, if you use radiosurgery to treat only the known sites of disease, might you be missing smaller deposits that would have been treated as a byproduct of whole-brain radiation, leading to worse long-term outcomes? And if you treat multiple sites with radiosurgery, at some point does the radiation dose to the normal parts of the brain become equivalent to that from whole-brain radiotherapy?

“It used to be that once lung cancer metastasized to the brain, the prognosis was poor. Whole-brain radiation therapy decreases the risk of death from neurologic causes, but at a steep cost. This study suggests that for lung cancer patients on targeted therapies whose cancer has spread to the brain, the use of radiosurgery makes it rare to die of causes related to brain metastases,” said Tyler Robin, M.D., Ph.D., senior resident in radiation oncology at the CU School of Medicine and the paper’s first author. Robin collaborated with senior author, Chad G. Rusthoven, M.D., assistant professor in radiation oncology at the University of Colorado Cancer Center.

“Despite the fact that patients on this study had multiple brain metastases, the outcomes were excellent with radiosurgery alone, with overall survival measured on the order of years,” said Rusthoven.

The study also asked whether radiosurgery to multiple lesions is likely to subject patients to the same cognitive risks as whole-brain radiation therapy – in other words, if you are using radiosurgery to treat 5, 10, 15 or 20 brain lesions, at some point are you effectively irradiating the whole brain?

“Even when we treated over 10 brain metastases in one session, the dose to the whole brain was phenomenally lower than with whole-brain radiotherapy,” Robin said.

The group measured radiation dose in two ways – to the whole brain and also specifically to the hippocampus, the brain structure responsible for processing new memories, which has been blamed for the cognitive side effects associated with brain radiation.

Whole-brain radiation delivers a radiation dose of approximately 30 Gy to the entire brain. A technique known as “hippocampal-sparing” or “hippocampal-avoidance” radiation delivers the same dose of radiation to the bulk of the brain, but only about 10 Gy to the hippocampus. The maximum radiation dose experienced with radiosurgery, even with many metastases, was 1.2 Gy in the hippocampus and 0.8 Gy across the whole brain.

“The very low doses of radiation to the normal brain observed with radiosurgery compared to whole-brain radiation has the potential to dramatically alter the risk of cognitive side effects,” said Rusthoven. “As the field of oncology evolves, we have to evolve with it. Patients with cancer who are eligible for targeted therapies are living longer than ever before, making treatment strategies that support long term quality of life even more important.”

For more information: www.jto.org

Related Content

Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
RSNA 2017 technical exhibits, expo floor, showing new radiology technology advances.
Feature | RSNA 2017 | January 11, 2018
January 11, 2018 — Here is a list of some of the key clinical study presentations, articles on trends and videos from
Hip Steroid Injections Associated with Bone Changes

58-year-old woman with left hip pain. X-ray from one month prior to the steroid/anesthetic injection demonstrates moderate joint space narrowing (arrows) and bony proliferation (arrowheads).

News | Orthopedic Imaging | January 11, 2018
January 11, 2018 – Osteoarthritis patients who received a steroid injection in the hip had a significantly greater in
Overlay Init