News | Radiation Therapy | January 03, 2018

Study Compares Radiosurgery and Whole-Brain Radiation in Lung Cancer Patients With Multiple Brain Metastases

Results indicate the brain receives less dose with radiosurgery, even when treating 10 or more lesions

Study Compares Radiosurgery and Whole-Brain Radiation in Lung Cancer Patients With Multiple Brain Metastases

January 3, 2018 — Although targeted therapies have produced dramatic advances in the ability to control some types of advanced lung cancer, growth of the disease in the brain remains a major problem. Radiation is often used to treat deposits in the brain, but the best technique to deliver radiation can be controversial. Whole-brain radiation therapy, as its name suggest, treats the entire brain but can be associated with notable cognitive side effects. Another strategy, radiosurgery, directs highly-focused radiation only to the sites of metastasis, largely sparing the normal brain.

The challenge has been to define in which circumstances each technique is best. The debate has centered on the number of brain metastases, with the field generally agreeing that with three or fewer deposits, radiosurgery is the preferred approach, and then switching to the use of whole-brain radiation to treat four or more deposits.

A University of Colorado Cancer Center study published in the Journal of Thoracic Oncology explores the use of radiosurgery in advanced lung cancer patients with four or more brain lesions – in some cases, dramatically more than four lesions – and shows that in a subset of patients, radiosurgery may be the best choice even when the number of brain lesions far exceeds the established three-lesion threshold.

In addition to discovering if radiosurgery could be effective in patients with greater than four brain lesions, the clinical study hoped to answer two more important questions — namely, if you use radiosurgery to treat only the known sites of disease, might you be missing smaller deposits that would have been treated as a byproduct of whole-brain radiation, leading to worse long-term outcomes? And if you treat multiple sites with radiosurgery, at some point does the radiation dose to the normal parts of the brain become equivalent to that from whole-brain radiotherapy?

“It used to be that once lung cancer metastasized to the brain, the prognosis was poor. Whole-brain radiation therapy decreases the risk of death from neurologic causes, but at a steep cost. This study suggests that for lung cancer patients on targeted therapies whose cancer has spread to the brain, the use of radiosurgery makes it rare to die of causes related to brain metastases,” said Tyler Robin, M.D., Ph.D., senior resident in radiation oncology at the CU School of Medicine and the paper’s first author. Robin collaborated with senior author, Chad G. Rusthoven, M.D., assistant professor in radiation oncology at the University of Colorado Cancer Center.

“Despite the fact that patients on this study had multiple brain metastases, the outcomes were excellent with radiosurgery alone, with overall survival measured on the order of years,” said Rusthoven.

The study also asked whether radiosurgery to multiple lesions is likely to subject patients to the same cognitive risks as whole-brain radiation therapy – in other words, if you are using radiosurgery to treat 5, 10, 15 or 20 brain lesions, at some point are you effectively irradiating the whole brain?

“Even when we treated over 10 brain metastases in one session, the dose to the whole brain was phenomenally lower than with whole-brain radiotherapy,” Robin said.

The group measured radiation dose in two ways – to the whole brain and also specifically to the hippocampus, the brain structure responsible for processing new memories, which has been blamed for the cognitive side effects associated with brain radiation.

Whole-brain radiation delivers a radiation dose of approximately 30 Gy to the entire brain. A technique known as “hippocampal-sparing” or “hippocampal-avoidance” radiation delivers the same dose of radiation to the bulk of the brain, but only about 10 Gy to the hippocampus. The maximum radiation dose experienced with radiosurgery, even with many metastases, was 1.2 Gy in the hippocampus and 0.8 Gy across the whole brain.

“The very low doses of radiation to the normal brain observed with radiosurgery compared to whole-brain radiation has the potential to dramatically alter the risk of cognitive side effects,” said Rusthoven. “As the field of oncology evolves, we have to evolve with it. Patients with cancer who are eligible for targeted therapies are living longer than ever before, making treatment strategies that support long term quality of life even more important.”

For more information: www.jto.org

Related Content

Lunit Unveiling AI-Based Mammography Solution at RSNA 2018
News | Mammography | November 15, 2018
Medical artificial intelligence (AI) software company Lunit will be returning to the 104th Radiological Society of...
Life Image and Mendel.ai Bringing Artificial Intelligence to Clinical Trial Development
News | Artificial Intelligence | November 15, 2018
Life Image and Mendel.ai announced a new strategic partnership that will facilitate the adoption and enhancement of...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Merit Medical Completes Acquisition of Cianna Medical
News | Women's Health | November 14, 2018
Disposable device manufacturer Merit Medical Systems Inc. announced the closing of a definitive merger agreement to...
Videos | ASTRO | November 08, 2018
ITN Editor Dave Fornell took a tour of some of the most innovative technologies on display on the expo floor at the 
The Fujifilm FCT Embrace CT System displayed for the first time at ASTRO 2018.
360 Photos | 360 View Photos | November 07, 2018
Fujifilm's first FDA-cleared compu...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...