News | October 08, 2008

SNM Launches Molecular Imaging Clinical Trials Network

October 8, 2008 – SNM announced on Oct. 7, 2008, the creation of the Molecular Imaging Clinical Trials Network in response to the need for streamlined processes to utilize imaging biomarkers in clinical research and clinical practice.

A major barrier to the development of new and effective drugs is the time, complexity and cost of the regulatory process. There is widespread agreement that the use of imaging biomarkers in the drug development process can significantly reduce this burden and speed the timelines to clinical use. To specifically address this opportunity, SNM has designed a first-of-its-kind model for the use of imaging biomarkers in clinical trials that spans drug development, molecular imaging, radiolabeled probe development and manufacturing and regulatory issues to integrate the use of investigational imaging biomarkers into multicenter clinical trials.

The network is designed to provide centralized investigational new drugs (INDs) for biomarkers of interest to the pharmaceutical and imaging communities and to coordinate standardized imaging protocols across qualified multicenter clinical trial sites. The plan specifically includes creation of a Biomarker Use Pathway, which will provide SNM-sponsored centralized INDs that pharma can cross-reference for their multicenter trials. Large trials of investigational therapeutics can often demonstrate safety and efficacy more efficiently if imaging biomarkers are included in the protocols. SNM is taking the lead to establish FDA-friendly imaging biomarker protocols via approved INDs.

The network will also provide information on qualified radiopharmaceutical manufacturers to help design and develop clinical trials. SNM plans to work closely with FDA to assure proper definition of imaging and manufacturing protocols for biomarkers with central INDs approved through the network.

The network received approval for the first centralized IND in September of this year. The approved IND application is for F-18 fluorothymidine (FLT)—an investigational positron emission tomography (PET) imaging biomarker that has apparent promise for demonstration of tumor proliferation as a surrogate marker of effectiveness in the development of novel cancer therapies. Several pharmaceutical developers have already expressed interest in utilizing this approved IND in near-term clinical trial work. Active clinical trials utilizing FLT are expected to begin in 2009.

One challenge of imaging-based multicenter trials is ensuring that all entities follow a standardized protocol and that results are evaluated consistently. To help address this challenge, the new network has developed a PET phantom program that will help all registered sites in the Network to demonstrate current standard imaging capabilities, including state of technology, staff training and ability to adhere to standardized methods. Registry participation will require ongoing certification of qualifications.

In order to aid the imaging community in understanding the roles and responsibilities of participation in the registry, the phantom program and multicenter clinical trials, the Molecular Imaging Clinical Trials Network will sponsor ongoing forums to educate imagers. The first of these workshops is scheduled for Feb. 8–9, 2009, in Clearwater, FL. The workshop will provide detailed information on the clinical trials network, train attendees on the roles and responsibilities of participation in multicenter clinical trials and discuss the specific imaging and manufacturing protocols contained in the FLT IND.

SNM is actively building a registry now for imaging centers interested in participating in the first round of clinical trials.

For more information: www.snm.org/ClinicalTrials

Related Content

ASNC and SNMMI Release Joint Document on Diagnosis, Treatment of Cardiac Sarcoidosis
News | Cardiac Imaging | August 18, 2017
August 18, 2017 — The American Society of Nuclear Cardiology (ASNC) has released a joint expert consensus document wi
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
Novel PET Tracer Detects Small Blood Clots

PET images (MIP 0-60 min) of three Cynomolgus monkeys. Strong signals are detected at the sites where inserted catheters had roughened surfaces. Almost no other background signal is visible. Only accumulation in the gallbladder becomes visible at the bottom of the image. Credit: Piramal Imaging GmbH, Berlin Germany.

News | PET Imaging | July 07, 2017
July 7, 2017 — Blood clots in veins a
Sponsored Content | Videos | Clinical Decision Support | June 29, 2017
Rami Doukky, M.D., system chair, Division of Cardiology, professor of medicine, Cook County Health and Hospitals Syst
Dual-Agent PET/MR With Time of Flight Detects More Cancer

Tc-99m MDP bone scan (left) is negative for osseous lesions. NaF/FDG PET/MRI (right and second slide) confirms absence of bone metastases, but shows liver metastases. Image courtesy of Stanford University.

News | PET-MRI | June 20, 2017
Simultaneous injections of the radiopharmaceuticals fluorine-18 fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (...
Combined Optical and Molecular Imaging Could Guide Breast-Conserving Surgery

WLE specimen from a patient with a grade 3, ER-/HER2-, no special type (NST) carcinoma. (A) Cerenkov image; (B) Grey-scale photographic image overlaid with Cerenkov signal. An increased signal from the tumor is visible (white arrows); mean radiance is 871 ± 131 photons/s/cm2/sr, mean TBR is 3.22. Both surgeons measured the posterior margin (outlined in blue) as 2 mm (small arrow); a cavity shaving would have been performed if the image had been available intraoperatively. The medial margin (outlined in green) measured >5 mm by both surgeons. Pathology ink prevented assessing the lateral margin; a phosphorescent signal is visible (open arrows). (C) Specimen radiography image. The absence of one surgical clip to mark the anterior margin, and the odd position of the superior margin clip (white arrow) prevented reliable margin assessment. (D) Combined histopathology image from two adjacent pathology slides on which the posterior margin (bottom of image) and part of the primary tumor are visible (open arrows). The distance from the posterior margin measured 3 mm microscopically (double arrow). The medial margin is > 5 mm (not present in image). Credit: A. D. Purushotham, M.D., King’s College London, UK

News | Nuclear Imaging | June 20, 2017
June 20, 2017 — Breast-conserving surgery (BCS) is the primary treatment for early-stage...
Overlay Init