News | February 26, 2013

Sniffing Out the Side Effects of Radiotherapy May Soon Be Possible

February 26, 2013 — Researchers at the University of Warwick and The Royal Marsden NHS Foundation Trust have completed a clinical study that may lead to clinicians being able to more accurately predict which patients will suffer from the side effects of radiotherapy.

Gastrointestinal side effects are commonplace in radiotherapy patients and occasionally severe, yet there is no existing means of predicting which patients will suffer from them. The results of the pilot study, published in the journal Sensors, outline how the use of an electronic nose and a newer technology, FAIMS (field asymmetric ion mobility spectrometry) might help identify those at higher risk.

Warwick Medical School, working in collaboration with the School of Engineering and The Royal Marsden NHS Foundation Trust (led by Dr. J Andreyev), carried out a pilot study to look into the relationship between levels of toxicity in the gut and the likelihood of experiencing side effects.

Dr. Ramesh Arasaradnam, of Warwick Medical School and Gastroenterologist at University Hospitals Coventry and Warwickshire, outlines the results of the study. "In the simplest terms, we believe that patterns in toxicity levels arise from differences in a patient's gut microflora. By using this technology we can analyze stool samples and sniff out the chemicals that are produced by these microflora to better predict the risk of side effects."

The success of the pilot study will lead to a broader investigation into the possible uses of these technologies and could be truly significant in helping clinicians inform patients receiving pelvic radiotherapy, before treatment is started.

Arasaradnam explains what this could mean for radiotherapy patients, "In essence, we will be able to predict those who are likely to develop severe gut related side effects by the pattern of gut fermentation that are altered as a result of radiotherapy. This will enable future directed therapy in these high risk groups."

Dr. James Covington, from the Warwick School of Engineering adds, "This technology offers considerable opportunities for the future. This shows just one application of being able to inform treatment by 'sniffing' patients. We foresee a time when such technology will become as routine a diagnostic test as checking blood pressure is today."

It is further evidence of the ongoing collaboration between Warwick Medical School and School of Engineering. This technology, first developed at Warwick in the early 1990s has been in continuous development ever since, producing some of the most sophisticated chemical sensors and sensor systems available today.

In 2009, the same high tech gas sensor was taken from the automotive world and used to research into quicker diagnosis for some gastrointestinal illnesses and metabolic diseases.

Related Content

RayStation Selected for New Carbon Ion Therapy Center in Japan
News | Treatment Planning | January 18, 2018
January 18, 2018 – RayStation has been chosen as the treatment planning system for a new carbon-ion therapy facility
Raysearch Receives First Order for the Raycare Oncology Information System
News | Oncology Information Management Systems (OIMS) | January 18, 2018
January 18, 2018 – Anderson Regional Cancer Center (ARCC) in Meridian, Mississippi, has placed the first order for...
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
Overlay Init