News | Clinical Decision Support | May 31, 2017

Siemens Healthineers and Fraunhofer MEVIS Announce Research Alliance on Clinical Decision Support

Collaboration will work to develop decision support systems for physicians based on deep machine learning

Siemens Healthineers and Fraunhofer MEVIS Announce Research Alliance on Clinical Decision Support

May 31, 2017 — Siemens Healthineers and the Fraunhofer Institute for Medical Image Computing MEVIS announced the formation of a new research alliance to develop decision support systems for physicians based on deep machine learning. The partners will discuss their joint efforts at the German Radiology Congress, May 24-27 in Leipzig, Germany.

The cooperation contracts for the project, planned to run for four years, were signed recently. Through this collaboration, the partners want to strengthen the bond between their research activities. The aim is not only to develop intelligent decision support systems for clinically relevant problems, but also establish them on the market successfully.

Today, most of the information in clinics and medical practices is stored digitally. Until now image data, findings, lab values, digital patient records and surgery reports are handled separately. However, there is a current trend aimed at gathering this information in one unified software framework. This data integration enables faster handling of medical information and lays the foundation for more efficient interaction between different specialties and to enable more precise and personalized clinical decisions. It also promises added value: New self-learning computer algorithms can detect hidden patterns in the data and give physicians valuable support for their diagnosis and therapy decisions. 

“When it comes to detecting relevant patterns and correlations in complex data volumes, computers are now better than humans,” said Horst Hahn, director of Fraunhofer MEVIS. “This does not mean, however, that computers will make therapy decisions. They will simply support doctors with database-driven knowledge,” he emphasized.

Based on comprehensive databases, the research partners will develop software systems that support clinicians in finding the best possible course of therapy. The work focuses on tumor diseases, such as lung cancer, for which physicians have to determine the necessity of a biopsy, a procedure known to be stressful for patients. The systems of Fraunhofer MEVIS and Siemens Healthineers would support physicians’ decisions in the future. The goal is to let the software display all the information that could be relevant for decision-making. A physician would not have to gather information from separate sources, saving valuable time. Additionally, the guidelines of medical specialist societies will be integrated automatically, providing physicians with valuable support. Ultimately, the algorithms will link the case at hand with a comprehensive database. Which methods have provided the greatest benefit in similar cases? Does a nuclear medicine method such as positron emission tomography (PET)/computed tomography (CT) make more sense than a biopsy?  

Most of all, the new system will help determine the best possible course of therapy. It will enable physicians with different specialties to access one central system to view all relevant information, including e.g. X-ray and magnetic resonance (MR) images, tissue analyses, genetic parameters, lab values and important data from the patient’s medical history. Computer programs will search for patterns in comprehensive databases that could deliver helpful insight into the case at hand: Did surgery outperform radiation therapy in similar cases? Does an ongoing course of chemotherapy bring the anticipated success, or should it be ceased? The partners already have elementary access to necessary reference databases, but much will be developed and completed after the project commences.

For more information: www.mevis.fraunhofer.de

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
LVivo EF Cardiac Tool Now Available for GE Vscan Extend Handheld Mobile Ultrasound
Technology | Cardiovascular Ultrasound | September 19, 2018
DiA Imaging Analysis Ltd. (DiA), a provider of artificial intelligence (AI)-powered ultrasound analysis tools,...
Exact Imaging Partners to Improve Prostate Cancer Detection With Artificial Intelligence
News | Prostate Cancer | September 19, 2018
Exact Imaging, makers of the ExactVu micro-ultrasound platform, has partnered with U.K.-based Cambridge Consultants to...
SimonMed Deploys ClearRead CT Enterprise Wide
News | Computer-Aided Detection Software | September 17, 2018
September 17, 2018 — National outpatient physician radiology group SimonMed Imaging has selected Riverain Technologie
Acuson Sequoia
News | Ultrasound Imaging | September 12, 2018
Siemens Healthineers announced the first global installation of its newest ultrasound system, the...
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Case Study | Information Technology | September 07, 2018
Established in 1970, Sovah Health – Martinsville, Va., resides in the foothills of the beautiful Blue Ridge Mountains...
Sponsored Content | Case Study | Information Technology | September 07, 2018
One of the Northeast’s major teaching hospitals is an international leader in virtually every area of medicine. It has...
Feature | Population Health | September 07, 2018 | By Jeff Zagoudis
Over the last several years in the U.S., healthcare providers have been trying to shift their focus to more preventive...
The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Sponsored Content | Case Study | Radiation Dose Management | September 07, 2018
Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate...