News | X-Ray | August 28, 2018

Scientists Advance Technique for Developing Novel Light Beams from Synchrotron Radiation

Japanese study may open a new way to generate X-ray beams

Scientists Advance Technique for Developing Novel Light Beams from Synchrotron Radiation

August 28, 2018 — A new study has demonstrated a method that produces novel light beams from synchrotron light sources, opening up a new way to generate X-ray beams.

Structured light, created using the process of generating and applying light to a surface, is important in many of today's devices, such as 3-D scanners, dual photography and microscopic technology.

The team of Japanese scientists — led by Shunya Matsuba, an assistant professor at the Hiroshima Synchrotron Radiation Center at Hiroshima University — has shown that structured light, in the form of a vector beam (light beams whose polarization direction rotates around its axis), can be produced from the superposition of two optical vortex beams (beams of lights that contain a point of zero intensity, forming a spiral phase structure.)

"We have demonstrated the generation of the vector beam using synchrotron radiation. This work has opened a way to generate X-ray vector beams," said co-author Prof. Masahiro Katoh of the Institute for Molecular Science (IMS) at the National Institutes of Natural Sciences/Sokendai in Japan.

The production of structured light in the X-ray wavelengths has been challenging. The new technique presented by the Japanese scientists can potentially allow for the use of such structured light in research areas accessible only with synchrotron radiation, such as X-ray absorption spectroscopy and X-ray crystallography.

The scientists based their method on a technique that produces circularly polarized light from two linearly polarized ones whose polarization directions are orthogonal to each other. In synchrotron light sources, this method has been applied to uniformly polarized beams coming from two undulators. An undulator is a device that emits quasi-monochromatic light with various polarizations.

Matsuba and his team applied this method for two vortex beams coming from two helical undulators positioned in tandem. The research follows previous studies that have used lasers and optical components to create vector beams, with wavelengths usually within the visible or near-infrared portions of the electromagnetic spectrum.

The findings were published in the journal of Applied Physics Letters1 in July 2018.

Katoh explained, "The next step of this research is to demonstrate the generation of vector beams of other types, for example, radially polarized beams. Our ultimate goal is to control all the optical properties of synchrotron radiation, such as wavelength, coherence, spatial, temporal structures and so on." This will pave the way for new opportunities in many fields, including X-ray diffraction, scattering and absorption/emission spectroscopy due to the new method of generating structured light that has been demonstrated in this study.

For more information: www.aip.scitation.org/journal/apl

Reference

1. Matsuba S., Kawase K., Miyamoto A., et al. Generation of vector beam with tandem helical undulators. Applied Physics Letters, July 13, 2018. https://doi.org/10.1063/1.5037621

Related Content

Agfa Brings Intelligent Radiography to RSNA 2018
News | Digital Radiography (DR) | September 17, 2018
September 17, 2018 — At the 2018 Radiological Society of North America (RSNA) annual meeting, Nov.
The DRX-Transportable System/Lite
News | X-Ray | September 12, 2018
Columbus Regional Health (Columbus, Ind.) has deployed a Carestream ...
Mount Sinai Serves as Official Medical Services Provider for 2018 U.S. Open
News | Orthopedic Imaging | September 06, 2018
For the sixth consecutive year, Mount Sinai will serve as the official medical services provider for the 2018 U.S. Open...
RSNA Announces Pneumonia Detection Machine Learning Challenge
News | Artificial Intelligence | August 27, 2018
The Radiological Society of North America (RSNA) has launched its second annual machine learning challenge. The RSNA...
Hologic Acquires Digital Specimen Radiography Company Faxitron Bioptics

VisionCT 3-D breast specimen-designated computed tomography (CT) system. Image courtesy of Faxitron Bioptics.

News | Breast Imaging | July 31, 2018
Hologic Inc. announced it has completed the acquisition of Faxitron Bioptics, a privately-held leader in digital...
The Aspen XDR Straight Arm
News | Digital Radiography (DR) | July 20, 2018
The Aspen XDR Straight Arm Digital Radiography System is an advanced and complete digital X-ray solution with a compact...
Fujifilm to Host Pediatric Imaging Best Practices Symposium at AHRA 2018
News | Pediatric Imaging | July 18, 2018
Fujifilm Medical Systems U.S.A. Inc. announced that it will offer educational opportunities and exhibit its latest...
The images (before and after) depict a 50 percent dose reduction in chest X-ray without compromising  image quality.

The images (before) depict a 50 percent dose reduction in chest X-ray without compromising
image quality.

Sponsored Content | Case Study | Radiation Dose Management | July 03, 2018
There are a handful of priorities for radiologists: lowest radiation dosage, highest image quality, optimal workflow,...
Metropolitan Washington Orthopaedic Practice Upgrades DR With Agfa DX-D 300s
News | Digital Radiography (DR) | June 15, 2018
Agfa announced that it has installed two DX-D 300 digital radiography (DR) solutions at the multi-office Centers for...
Zebra Medical Vision Unveils AI-Based Chest X-ray Research
News | Artificial Intelligence | June 08, 2018
June 8, 2018 — Zebra Medical Vision unveiled its Textray chest X-ray research, which will form the basis for a future